
Tizen 3D UI

DALi 3D Engine
building exciting

User Interfaces

Kimmo Hoikka

Samsung

Introduction

3

Introduction

• Kimmo Hoikka

• Head of 3D UI & Graphics Middleware team in Samsung

Electronics R&D UK

• 17 years in commercial SW development, past 15 years in Mobile

 UI & Graphics, Middleware domains

• Before commercial career 10 years of Graphics Demo programming

 Amiga 500, Commodore C64, etc

4

Introduction

• Tizen 3D UI

• DALi 3D Engine & UI Toolkit

• DALi is a 3D Engine

• UI is represented as a 3D Scene Graph

• Animations and Transitions are done using

3D Math (Vector, Quaternion & Matrix)

• Rendering and Visual Effects are done using
Open GL ES Shaders, Vertices and Textures

• OpenGL ES 2 and 3 support

• 2D world is the Z plane 0 in the 3D world

• When using default camera

5

System Architecture

• DALi is part of the Tizen
Native Framework

• Graphics & UI Core module

• Mobile and TV profiles

• Implemented in C++

• DALi (Dynamic Animation Library)

• 2D and 3D Application UIs with

Realistic Effects & Animations

• Home Screen, Lock Screen,

Gallery, Music Player …

Architecture

7

Architecture

• Core Library

• Event handling, Scene Graph,
Rendering, Resource
management

• Adaptor

• Threading model

• Integration with the main loop

• Platform abstraction

• Resource loading and
decoding with multiple threads

• Toolkit

• Reusable UI controls,

• Effects and Scripting support
Uses

Dali

Module

Required

Module

Dali Toolkit

Core

Actors

Platform Abstraction

Adaptor

Window
Event

Loop

Platform

Threading OpenGL
Native Windowing

/ EGL

Resouce

Loading

Animation

Dynamics

Effects

Math Rendering

Events

Sound /

Haptic
Sensors

Scene

Graph

UI Controls

Effects

Scripting

Support

8

3D Scene Graph

• Scene graph based UI is a tree of Nodes

• Each Node can have 0-N Children

• Each Node inherits its parent Transformation

$ Position, Rotation, Scale

• Allows easy layout and animation management

• Each Node’s Transformation is relative to a

reference point in the parent’s space
• Anchor point in the Nodes own coordinate space

• Parent origin in the Parents coordinate space

• Child does not have to be inside its parent area

Root
Position,
Rotation

Scale

Node
Position,
Rotation

Scale

Node
Position,
Rotation

Scale

Node
Position,
Rotation

Scale

Node
Position,
Rotation

Scale

Node
Position,
Rotation

Scale

Node
Position,
Rotation

Scale

9

Multithreaded Engine

• DALi uses multithreaded architecture
• Best performance and scalability

• Event Thread
• The main thread in which application code

and event handling runs

• Update Thread
• Updates the nodes on scene

• Runs animations, constraints and physics

• Render Thread
• Open GL drawing, texture and geometry

uploading etc

• Resource Threads
• Loads font, image and model resources and

decodes into bitmaps etc

Process

Thread

Inter-thread

communication

Application Process

Render

Thread

Event

Thread

Resource

Threads

Update

Thread

10

3D Core library

• Animation framework

• Event & gesture handling

• Rendering of the 3D scene

• Physics plug-in API

• Model loading plug-in API

• Core is platform and window
system agnostic

Actors
Camera, Image, Layer,

Light, Mesh, Text

Animation
Alpha-functions, Constraint

Key Frames

Common
Stage, Light

Dynamics
Body, Collision, Joint

Shape, World

Event & Gesture
Touch, Key, Mouse-wheel /

Tap, LongPress, Pan, Pinch

Geometry
Mesh, Spline,

Animated-mesh/vertex,

Images
Bitmap, Distance-field,

Frame buffer, Native

Math
Matrix, Quaternion,

Radian, Vector, Rect

Modeling
Bone, Entity,

Material, Model-animation

Render-tasks
On/Off Screen, Viewport

Shader-effects
Uniform animation

Text
Font, Text-Style

11

3D Toolkit library

• Full Application UI development
facilities
• UI Controls, such as Buttons, Text view …

• Effects, such as Page turn, Motion blur

• Focus management, Accessibility, Styling
support etc

• JSON Builder
• Defining UI in an external JSON file

produced by GUI builder or by developer

JSON Builder

Controls Effects
Bendy, Blind, Bubble, Carousel,

Displacement, Dissolve,

Distance-field, Image-region, Iris,

Mirror, Motion-blur & stretch,

Nine-patch-mask, Overlay,

Page-turn, Ripple, Shear,

Swirl, Water, Filters, … Button
Check-box, Push

Table-View Text-Input Slider Effect-view

Motion blur,

Gaussian-blur,

Super-blur-view

Popup Magnifier Shadow-view

Image-view
Masked-image

Item-view
Item-factory, Item-layout

Album-layout, Depth-layout, Grid-layout

Roll-layout, Spiral-layout

Scroll-view
Scroll-group, Scroll-view-effect

Carousel-effect, Cube-effect, Depth-effect

Slide-effect, Twist-effect, Wobble-effect

Text-View

Focus-manager

Markup-processor

12

Adaptor libraries

• Application framework and Window system integration
• Provides integration into the native windowing system: EFL, X11, Wayland…

• Multithreading control and synchronization

• Platform Abstraction isolates the core module from platform specific parts
• For example Resource loading and decoding (Images, Glyphs, …)

• Plug-in implementations for external optional modules

Platform Abstraction

Ecore-x
Window surface,

Pixmap surface,

NativeBuffer surface

Common
Accessibility, Clipboard, Device-layout, Timer, Drag-and-drop, Haptic player,

Orientation, Pixmap-image, Render-surface, Sound-player, Style, Tilt sensor,

Tts-player, Virtual keyboard, Window, …

Events
Event handler,

Gesture detector

Open GL / EGL

abstraction

Data-cache

Glyph loading

Resource loaders

Plug-ins

Feedback

Dynamics
(Bullet)

Model load
(Assimp)

13

// C++
Dali::ImageActor imageActor = Dali::ImageActor::New(Dali::Image::New("/photos/background.jpg"));

imageActor.SetParentOrigin(Dali::ParentOrigin::CENTER);

imageActor.SetAnchorPoint(Dali::AnchorPoint::CENTER);

Dali::Stage::GetCurrent().Add(imageActor);

...

bool onPressed(Dali::Actor, const TouchEvent& event)

{

 Dali::Animation anim = Dali::Animation::New(1.5f);

 anim.MoveTo(actor, Vector3(200,-100,0), AlphaFunctions::Bounce);

 anim.play();

 return true; // consume the touch event

}

...

imageActor.TouchedSignal().Connect(&onPressed);

• Applications can be developed in C++

APIs: C++

14

// JavaScript
var imageActor = new dali.ImageActor(new dali.Image("/photos/background.jpg"));

imageActor.parentOrigin = dali.CENTER;

imageActor.anchorPoint = dali.CENTER;

dali.stage.add(myImageActor);

...

function onPressed(actor, touchEvent)

{

 var animOptions = { alpha: "bounce", delay: 0, duration: 15 };

 var anim = new dali.Animation();

 anim.animateTo(actor, "position", [200,-100,0], animOptions);

 anim.play();

 return true; // consume the touch event

}

...

imageActor.connect("touched", onPressed);

• Applications can be developed in JavaScript (*)

APIs: JavaScript

(*) under development

15

// JSON
 "animations":

 {

 "move-image":

 {

 "duration": 1.5,

 "properties":

 [

 {

 "actor":"image",

 "property":"position",

 "value":[200,-100,0],

 "alpha-function": "BOUNCE",

 }

]

 }

 }

• Application UI layout and interaction can also be described in
JSON

APIs: JSON

"stage":

 [

 {

 "name":"image",

 "type":"ImageActor",

 "image":

 {

 "filename":”/photos/background.jpg"

 },

 "signals" :

 [

 { "name" : "touched", "action": "play",

 "animation": "move-image" }

],

 }

]

}

Features

17

Features: Actors & UI Controls

• Stage is the root of the world

• Actors are processed when they are on-stage

• Image, Text and Mesh Actors are the Building Blocks (*)

• Built-in properties include Position, Size, Rotation, Scale, ParentOrigin,

AnchorPoint and Color

• UI Controls provide additional Layouting and Scrolling

• Buttons, Sliders, Popup etc as basic UI controls

• ScrollView, ItemView for Scrolling of contents or views

• Alignment, TableView, Navigation frame etc for traditional layouting & UI

hierarchy management
(*) Particle Actor under development

18

Features: Animation

• Property animation
• Predefined actor properties (Position, Size, Scale, Rotation, Color, Visibility)

• Custom properties (Added by Application or UI Control)

• Vertex & Mesh animation
• Deform mesh (for example animated graphs)

• Shader Uniform animation
• Control the shader effect

• Model animation
• Bone & Joint animation

• Key frame animation

• Flexible system
• Single animation can contain properties from many objects

• Animations will blend if the target property is same

19

Features: Constraints and Property Notifications

• Constraint
• Allows making a property a function of other properties
$ Property = Func(property1,property2,…)

• In breakout example, Collision property is a function of
Position of ball, Position of paddle, Size of the ball and
Size of the paddle

• Constraint function can calculate when the ball hits a
paddle and set collision property to true

• Property notification
• Application can get notification when property crosses a

threshold or reaches a value

• In the breakout example, when collision is true; ball
changes direction and sound is played

20

Features: Shader Effects

• Shader effects can modify the appearance
of objects during rendering
• Each Actor has its own default Shader based

on its geometry type (Image, Text and Mesh)

• Geometry (vertex) or Pixels (fragment) or both
can be modified by overriding the default
shader

• Lots of built-in Shaders in Toolkit
• Bendy, Blind, Bubble, Carousel, Displacement,

Dissolve, Distance-field, Image-region, Iris,
Mirror, Motion-blur & stretch, Nine-patch-mask,
Overlay, Page-turn, Ripple, Shear, Swirl,
Water, Filters, …

Page Turn Effect

Bubble Effect

Dissolve Effect

21

Features: Effects

• Image effects

• Cube transition effects: Cross, Fold, Wave

• Effect containers

• Containers that apply an effect for all its children
• Bloom effect

• Gaussian Blur

• Super blur

• Shadow View

• Effect View

• Bubble effect

• Motion blur effect

Motion Blur Effect

Shadow View

Cube Transition Effect

22

Features: ItemView

• ItemView

• Scrolling container based on data source provided by application

• Layout specifies each items layout using constraints and items layout
position
• Constraint for Position, Size, Color, Rotation, Scale, …

• Built in layouts: Grid, Spiral, Depth,
Album, Navigation, Roll

• Application can provide custom layout

• Layout can be dynamically changed,
all items are animated automatically
to new layout.

ItemView layouts: Grid, Depth, Spiral

23

Features: ScrollView

• ScrollView

• Scrolling container with Scroll effect support

• Horizontal & Vertical scrolling

• Flick, Snap, Axis lock, Custom Rulers

• Does not layout its children, just moves them

• Built in Scroll-effects
• Carousel, Cube, Depth, Twist, Page Cube, Slide, Wobble, …

Inner cube scroll effect

24

Features: 3D Models & Bone animation

• Model loading support

• Industry standard formats, e.g. Collada, Maya, 3DS, etc

• Own Binary format (faster start-up)

• Model importer plug-in

• Uses Open Asset Import Library (assimp) to load

industry standard models.

• Bone and key-frame animations also supported

from models

Model Import and

Key-frame Animation

25

Features: Physics integration

• Supports rigid and soft body physics effects

• Actor has dynamics API to set properties for the physics simulation

• Actor::EnableDynamics()

The actor will behave as a rigid/soft body in the simulation

• Stage::InitializeDynamics()

Initialize the dynamics world and enable simulation

• Physics is a plug-in API

• Allows integrating any third party physics engine

• Bullet plug-in provided with adaptor

 Rigid body

collision example

26

Features: Video

27

Features: GUI Builder

• DALi provides scripting support

• Creating a scene using a variety of actors

• Creating animations for actor properties: position, rotation, size etc.

• Changing the style of an actor

• Scriptable functionality is described in a JSON file

• GUI Builder is an interactive, visual tool to create a UI

• Browser based, so naturally cross platform

• Uses a combination of HTML, CSS & JavaScript

• Outputs a JSON file that DALi-launcher can run or C++ application can load

28

GUI Builder: Static Layout development

JSON
Output a Script

Run with

Dali-launcher

29

GUI Builder: C++ Application with JSON layouts

Export Template(s)

Run

JSON

Load template(s)

to use, apply data

C++ Application

Loaded at Runtime

Contacts

Retrieve

contacts

30

• Directly manipulate the scene to create animations

• Drag & drop to create move animations

• Resize to create size animations

• Scale & rotate to create scale & rotation animations

• Editable & interactive timeline

• Movable playback head, easily add & combine animation segments

• Connect Animations with Actions (e.g. button-press)

• A variety of easing functions for the animations

• Linear, Sine, Ease In, Bounce etc.

GUI Builder: Animation View

31

GUI Builder: Animation View

Timeline

Easing

Functions

Several

Animations can

be defined

Properties being

Animated

Working area

(Direct

Manipulation)

Playback

Controls

Movable

playback head

32

GUI Builder: Video

33

What next?

• Get the code:

• git clone https://review.tizen.org/gerrit/platform/core/uifw/dali-core

• git clone https://review.tizen.org/gerrit/platform/core/uifw/dali-toolkit

• git clone https://review.tizen.org/gerrit/platform/core/uifw/dali-adaptor

• git clone https://review.tizen.org/gerrit/platform/core/uifw/dali-demo

• Play with it

• Build Cool and Exciting applications !!!

• Contribute

• Ideas, Features, Bug fixes !!!

https://review.tizen.org/gerrit/platform/core/uifw/dali-core
https://review.tizen.org/gerrit/platform/core/uifw/dali-core
https://review.tizen.org/gerrit/platform/core/uifw/dali-core
https://review.tizen.org/gerrit/platform/core/uifw/dali-toolkit
https://review.tizen.org/gerrit/platform/core/uifw/dali-toolkit
https://review.tizen.org/gerrit/platform/core/uifw/dali-toolkit
https://review.tizen.org/gerrit/platform/core/uifw/dali-adaptor
https://review.tizen.org/gerrit/platform/core/uifw/dali-adaptor
https://review.tizen.org/gerrit/platform/core/uifw/dali-adaptor
https://review.tizen.org/gerrit/platform/core/uifw/dali-demo
https://review.tizen.org/gerrit/platform/core/uifw/dali-demo
https://review.tizen.org/gerrit/platform/core/uifw/dali-demo

Thank You!!

Contact: kimmo <dot> hoikka <at> samsung <dot> com

