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Introduction 

• Kimmo Hoikka 

• Head of 3D UI & Graphics Middleware team in Samsung  

Electronics R&D UK 

• 17 years in commercial SW development, past 15 years in Mobile 

 UI & Graphics, Middleware domains 

• Before commercial career 10 years of Graphics Demo programming 

 Amiga 500, Commodore C64, etc 
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Introduction 

• Tizen 3D UI 

• DALi 3D Engine & UI Toolkit 

• DALi is a 3D Engine 

• UI is represented as a 3D Scene Graph 

• Animations and Transitions are done using 

3D Math (Vector, Quaternion & Matrix) 

• Rendering and Visual Effects are done using 
Open GL ES Shaders, Vertices and Textures 

• OpenGL ES 2 and 3 support 

• 2D world is the Z plane 0 in the 3D world 

• When using default camera 
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System Architecture 

• DALi is part of the Tizen 
Native Framework 

• Graphics & UI Core module 

• Mobile and TV profiles 

• Implemented in C++ 

• DALi (Dynamic Animation Library) 

• 2D and 3D Application UIs with 

Realistic Effects & Animations 

• Home Screen, Lock Screen, 

Gallery, Music Player … 



Architecture 
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Architecture 

• Core Library 

• Event handling, Scene Graph, 
Rendering, Resource 
management 

• Adaptor 

• Threading model 

• Integration with the main loop 

• Platform abstraction 

• Resource loading and 
decoding with multiple threads 

• Toolkit 

• Reusable UI controls,  

• Effects and Scripting support 
Uses 

Dali 
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Window 
Event 
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Platform 
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Native Windowing 
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Resouce  

Loading 

Animation 

Dynamics 

Effects 

Math Rendering 

Events 

Sound / 

Haptic 
Sensors 

Scene 

Graph 

UI Controls 

Effects 

Scripting 

Support 
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3D Scene Graph 

• Scene graph based UI is a tree of Nodes 

• Each Node can have 0-N Children 

• Each Node inherits its parent Transformation 

$ Position, Rotation, Scale 

• Allows easy layout and animation management 

• Each Node’s Transformation is relative to a  

reference point in the parent’s space 
• Anchor point in the Nodes own coordinate space 

• Parent origin in the Parents coordinate space 

• Child does not have to be inside its parent area 

Root 
Position, 
Rotation 

Scale 

Node 
Position, 
Rotation 

Scale 

Node 
Position, 
Rotation 

Scale 

Node 
Position, 
Rotation 

Scale 

Node 
Position, 
Rotation 
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Node 
Position, 
Rotation 

Scale 



9 

Multithreaded Engine 

• DALi uses multithreaded architecture 
• Best performance and scalability 

• Event Thread 
• The main thread in which application code 

and event handling runs 

• Update Thread 
• Updates the nodes on scene 

• Runs animations, constraints and physics  

• Render Thread 
• Open GL drawing, texture and geometry 

uploading etc 

• Resource Threads 
• Loads font, image and model resources and 

decodes into bitmaps etc 

Process 

Thread 

Inter-thread 

communication 

Application Process 

Render 

Thread 

Event 

Thread 

Resource 

Threads 

Update 

Thread 
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3D Core library 

• Animation framework 

• Event & gesture handling 

• Rendering of the 3D scene 

• Physics plug-in API 

• Model loading plug-in API 

• Core is platform and window 
system agnostic 

 

Actors 
Camera, Image, Layer, 

Light, Mesh,  Text 

Animation 
Alpha-functions, Constraint 

Key Frames 

Common 
Stage, Light 

Dynamics 
Body, Collision, Joint 

Shape, World 

Event & Gesture 
Touch, Key, Mouse-wheel / 

Tap, LongPress, Pan, Pinch 

Geometry 
Mesh, Spline, 

Animated-mesh/vertex,  

Images 
Bitmap, Distance-field, 

Frame buffer, Native 

Math 
Matrix, Quaternion, 

Radian, Vector, Rect 

Modeling 
Bone, Entity, 

Material, Model-animation 

Render-tasks 
On/Off Screen, Viewport 

Shader-effects 
Uniform animation 

Text 
Font, Text-Style 
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3D Toolkit library 

• Full Application UI development 
facilities 
• UI Controls, such as Buttons, Text view … 

• Effects, such as Page turn, Motion blur 

• Focus management, Accessibility, Styling 
support etc 

• JSON Builder 
• Defining UI in an external JSON file 

produced by GUI builder or by developer 

 

 

JSON Builder 

Controls Effects 
Bendy, Blind, Bubble, Carousel,  

Displacement, Dissolve,  

Distance-field, Image-region, Iris, 

Mirror, Motion-blur & stretch,  

Nine-patch-mask, Overlay,  

Page-turn, Ripple, Shear, 

Swirl, Water, Filters, … Button 
Check-box, Push 

Table-View Text-Input Slider Effect-view 

Motion blur, 

Gaussian-blur, 

Super-blur-view 

Popup Magnifier Shadow-view 

Image-view 
Masked-image 

Item-view 
Item-factory, Item-layout 

Album-layout, Depth-layout, Grid-layout 

Roll-layout, Spiral-layout 

Scroll-view 
Scroll-group, Scroll-view-effect 

Carousel-effect, Cube-effect, Depth-effect 

Slide-effect, Twist-effect, Wobble-effect 

Text-View 

Focus-manager 

Markup-processor 
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Adaptor libraries 

• Application framework and Window system integration 
• Provides integration into the native windowing system: EFL, X11, Wayland… 

• Multithreading control and synchronization 

• Platform Abstraction isolates the core module from platform specific parts 
• For example Resource loading and decoding (Images, Glyphs, …) 

• Plug-in implementations for external optional modules 

Platform Abstraction 
 

Ecore-x 
Window surface,  

Pixmap surface,  

NativeBuffer surface 

Common 
Accessibility, Clipboard, Device-layout, Timer, Drag-and-drop, Haptic player,  

Orientation, Pixmap-image, Render-surface, Sound-player, Style, Tilt sensor,  

Tts-player, Virtual keyboard, Window, … 

Events 
Event handler,  

Gesture detector 

Open GL / EGL 

abstraction 

Data-cache 

Glyph loading 

Resource loaders 

Plug-ins 
 

 

 

 

 

 

 

 

Feedback 

Dynamics 
(Bullet) 

Model load 
(Assimp) 
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// C++ 
Dali::ImageActor imageActor = Dali::ImageActor::New( Dali::Image::New( "/photos/background.jpg" ) ); 

imageActor.SetParentOrigin( Dali::ParentOrigin::CENTER ); 

imageActor.SetAnchorPoint( Dali::AnchorPoint::CENTER ); 

Dali::Stage::GetCurrent().Add( imageActor ); 

... 

bool onPressed( Dali::Actor, const TouchEvent& event ) 

{ 

  Dali::Animation anim = Dali::Animation::New( 1.5f ); 

  anim.MoveTo( actor, Vector3( 200,-100,0), AlphaFunctions::Bounce ); 

  anim.play(); 

  return true; // consume the touch event 

} 

... 

imageActor.TouchedSignal().Connect( &onPressed ); 

• Applications can be developed in C++ 

APIs: C++ 
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// JavaScript 
var imageActor = new dali.ImageActor( new dali.Image( "/photos/background.jpg" ) ); 

imageActor.parentOrigin = dali.CENTER; 

imageActor.anchorPoint = dali.CENTER; 

dali.stage.add( myImageActor ); 

... 

function onPressed( actor, touchEvent ) 

{ 

  var animOptions = { alpha: "bounce", delay: 0, duration: 15 }; 

  var anim = new dali.Animation(); 

  anim.animateTo( actor, "position", [ 200,-100,0], animOptions ); 

  anim.play(); 

  return true; // consume the touch event 

} 

... 

imageActor.connect( "touched", onPressed ); 

• Applications can be developed in JavaScript (*) 

APIs: JavaScript 

(*) under development 
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// JSON 
 "animations": 

  { 

    "move-image": 

    { 

      "duration": 1.5, 

      "properties": 

      [ 

        { 

          "actor":"image", 

          "property":"position", 

          "value":[200,-100,0], 

          "alpha-function": "BOUNCE", 

        } 

      ] 

    } 

  } 

• Application UI layout and interaction can also be described in 
JSON 

APIs: JSON 

"stage": 

  [ 

    { 

      "name":"image", 

      "type":"ImageActor", 

      "image": 

      { 

        "filename":”/photos/background.jpg" 

      }, 

      "signals" : 

      [ 

        { "name" : "touched", "action": "play", 

          "animation": "move-image" } 

      ], 

    } 

  ] 

} 



Features 
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Features: Actors & UI Controls 

• Stage is the root of the world 

• Actors are processed when they are on-stage 

• Image, Text and Mesh Actors are the Building Blocks (*) 

• Built-in properties include Position, Size, Rotation, Scale, ParentOrigin, 

AnchorPoint and Color 

• UI Controls provide additional Layouting and Scrolling 

• Buttons, Sliders, Popup etc as basic UI controls 

• ScrollView, ItemView for Scrolling of contents or views 

• Alignment, TableView, Navigation frame etc for traditional layouting & UI 

hierarchy management 
(*) Particle Actor under development 
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Features: Animation 

• Property animation 
• Predefined actor properties (Position, Size, Scale, Rotation, Color, Visibility) 

• Custom properties (Added by Application or UI Control) 

• Vertex & Mesh animation 
• Deform mesh (for example animated graphs) 

• Shader Uniform animation 
• Control the shader effect 

• Model animation 
• Bone & Joint animation 

• Key frame animation 

• Flexible system 
• Single animation can contain properties from many objects 

• Animations will blend if the target property is same 
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Features: Constraints and Property Notifications 

• Constraint 
• Allows making a property a function of other properties 
$ Property = Func(property1,property2,…) 

• In breakout example, Collision property is a function of 
Position of ball, Position of paddle, Size of the ball and 
Size of the paddle 

• Constraint function can calculate when the ball hits a 
paddle and set collision property to true 

• Property notification 
• Application can get notification when property crosses a 

threshold or reaches a value 

• In the breakout example, when collision is true; ball 
changes direction and sound is played 
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Features: Shader Effects 

• Shader effects can modify the appearance 
of objects during rendering 
• Each Actor has its own default Shader based 

on its geometry type (Image, Text and Mesh) 

• Geometry (vertex) or Pixels (fragment) or both 
can be modified by overriding the default 
shader 

• Lots of built-in Shaders in Toolkit 
• Bendy, Blind, Bubble, Carousel, Displacement, 

Dissolve, Distance-field, Image-region, Iris, 
Mirror, Motion-blur & stretch, Nine-patch-mask, 
Overlay, Page-turn, Ripple, Shear, Swirl, 
Water, Filters, … 

Page Turn Effect 

Bubble Effect 

Dissolve Effect 



21 

Features: Effects 

• Image effects 

• Cube transition effects: Cross, Fold, Wave 

• Effect containers 

• Containers that apply an effect for all its children 
• Bloom effect 

• Gaussian Blur 

• Super blur 

• Shadow View 

• Effect View 

• Bubble effect 

• Motion blur effect 

Motion Blur Effect 

Shadow View 

Cube Transition Effect 
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Features: ItemView 

• ItemView 

• Scrolling container based on data source provided by application 

• Layout specifies each items layout using constraints and items layout 
position 
• Constraint for Position, Size, Color, Rotation, Scale, … 

• Built in layouts: Grid, Spiral, Depth,  
Album, Navigation, Roll 

• Application can provide custom layout 

• Layout can be dynamically changed,  
all items are animated automatically  
to new layout.  

 
ItemView layouts: Grid, Depth, Spiral 
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Features: ScrollView 

• ScrollView 

• Scrolling container with Scroll effect support 

• Horizontal & Vertical scrolling 

• Flick, Snap, Axis lock, Custom Rulers 

• Does not layout its children, just moves them 

• Built in Scroll-effects 
• Carousel, Cube, Depth, Twist, Page Cube, Slide, Wobble, … 

 

Inner cube scroll effect 
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Features: 3D Models & Bone animation 

• Model loading support 

• Industry standard formats, e.g. Collada, Maya, 3DS, etc 

• Own Binary format (faster start-up) 

• Model importer plug-in 

• Uses Open Asset Import Library (assimp) to load 

industry standard models. 

• Bone and key-frame animations also supported 

from models 

Model Import and  

Key-frame Animation 
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Features: Physics integration 

• Supports rigid and soft body physics effects 

• Actor has dynamics API to set properties for the physics simulation 

• Actor::EnableDynamics() 

The actor will behave as a rigid/soft body in the simulation 

• Stage::InitializeDynamics() 

Initialize the dynamics world and enable simulation 

• Physics is a plug-in API 

• Allows integrating any third party physics engine  

• Bullet plug-in provided with adaptor 

 Rigid body  

collision example 
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Features: Video 
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Features: GUI Builder 

• DALi provides scripting support 

• Creating a scene using a variety of actors 

• Creating animations for actor properties: position, rotation, size etc. 

• Changing the style of an actor 

• Scriptable functionality is described in a JSON file 

• GUI Builder is an interactive, visual tool to create a UI 

• Browser based, so naturally cross platform 

• Uses a combination of HTML, CSS & JavaScript 

• Outputs a JSON file that DALi-launcher can run or C++ application can load 
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GUI Builder: Static Layout development 

JSON 
Output a Script 

Run with 

Dali-launcher 
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GUI Builder: C++ Application with JSON layouts 

Export Template(s) 

Run 

JSON 

Load template(s) 

to use, apply data 

C++ Application 

Loaded at Runtime 

Contacts 

Retrieve  

contacts 
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• Directly manipulate the scene to create animations 

• Drag & drop to create move animations 

• Resize to create size animations 

• Scale & rotate to create scale & rotation animations 

• Editable & interactive timeline 

• Movable playback head, easily add & combine animation segments 

• Connect Animations with Actions (e.g. button-press) 

• A variety of easing functions for the animations 

• Linear, Sine, Ease In, Bounce etc. 

GUI Builder: Animation View 
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GUI Builder: Animation View 

Timeline 

Easing 

Functions 

Several 

Animations can 

be defined 

Properties being 

Animated 

Working area 

(Direct 

Manipulation) 

Playback 

Controls 

Movable 

playback head 
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GUI Builder: Video 
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What next? 

• Get the code: 

• git clone https://review.tizen.org/gerrit/platform/core/uifw/dali-core 

• git clone https://review.tizen.org/gerrit/platform/core/uifw/dali-toolkit 

• git clone https://review.tizen.org/gerrit/platform/core/uifw/dali-adaptor 

• git clone https://review.tizen.org/gerrit/platform/core/uifw/dali-demo 

• Play with it 

• Build Cool and Exciting applications !!! 

• Contribute 

• Ideas, Features, Bug fixes !!! 

https://review.tizen.org/gerrit/platform/core/uifw/dali-core
https://review.tizen.org/gerrit/platform/core/uifw/dali-core
https://review.tizen.org/gerrit/platform/core/uifw/dali-core
https://review.tizen.org/gerrit/platform/core/uifw/dali-toolkit
https://review.tizen.org/gerrit/platform/core/uifw/dali-toolkit
https://review.tizen.org/gerrit/platform/core/uifw/dali-toolkit
https://review.tizen.org/gerrit/platform/core/uifw/dali-adaptor
https://review.tizen.org/gerrit/platform/core/uifw/dali-adaptor
https://review.tizen.org/gerrit/platform/core/uifw/dali-adaptor
https://review.tizen.org/gerrit/platform/core/uifw/dali-demo
https://review.tizen.org/gerrit/platform/core/uifw/dali-demo
https://review.tizen.org/gerrit/platform/core/uifw/dali-demo


Thank You!! 

 
Contact: kimmo <dot> hoikka <at> samsung <dot> com 

 




