
Core object model
EO / EFL++

Carsten Haitzler
Samsung Electronics

Principal Engineer
Enlightenment/EFL Founder

c.haitzler@samsung.com

2

EFL + Elementary

● A toolkit somwhere between GTK+ and Qt in breadth and features
● Written in C
● Has a primitive object model of its own since its start
● Is at the core of Tizen today

3

Kernel + libc + core libs etc.

EFL + Elementary

OEM
AppsWeb

Runtime
Tizen
Native

OEM + 3rd Party
Apps

* Really really really simplified diagram

4

Ecore

Elementary

Eina

EetEo

Eeeze EvasEIO ElDbus

Embryo

EdjeEmotion EphysicsEthumb

Mainloop, Audio, File, Input, X11,
Wayland, Win32, Coca, Linux FB, DRM,
TCP/UDP, HTTP, Avahi etc.

5

Ecore

Elementary

Eina

EetEo

Eeeze EvasEIO ElDbus

Embryo

EdjeEmotion EphysicsEthumb

Mainloop, Audio, File, Input, X11,
Wayland, Win32, Coca, Linux FB, DRM,
TCP/UDP, HTTP, Avahi etc.

EO

7

EO – our new base class

● Before we had pseudo-objects
● Timers, Animators, etc.
● Evas objects
● Edje objects (inhrited from Evas)
● Elementary objects (inherited from Evas and Edje)
● And more...

● EO unifies all of these with a single base class
● Done in C
● Provides call safety and object access safety

● EO provides binding generation for C++ … and soon LUA etc.

8

EO features

● Single and multiple inheritance with overrides
● Plain interfaces
● Mixins
● Reference counting

● Weak references
● Cross-references between objects

● Event callbacks and control for all objects
● Parent + child tree (children auto deleted)
● Key + value attachment to all objects
● Runtime checks

● Invalid reference access checks
● Method/class/type checks

9

EO – Why?

● You just re-invented GObject!
● No – our base class is more extensive
● Features built around unifying and providing compat for existing EFL
● We now auto-generate the boilerplate code
● We auto-generate legacy compatibility binding functions for C
● We have runtime method checks, not compile-time
● We have an elaborate object handle indirection scheme for safety

10

EO – Object reference safety?

● In C and C++ most objects are pointers (Qt, GTK+, EFL)
● We now hide pointers and use indirection

0x803e00f4

BEFORE

ACTUAL
MEMORY

OF OBJECT
DATA

IF NULL THEN
INVALID

VALID

READ FIRST 4 BYTES OF
OBJECT MEMORY TO

CHECK MAGIC NUMBER

IF NOT CORRECT
NUMBER FOR TYPE

THEN INVALID

VALID – ACCESS DATA

11

EO – Object reference safety?

● In C and C++ most objects are pointers (Qt, GTK+, EFL)
● We now hide pointers and use indirection

0x803e00f4

BEFORE

ACTUAL
MEMORY

OF OBJECT
DATA

IF NULL THEN
INVALID

VALID

READ FIRST 4 BYTES OF
OBJECT MEMORY TO

CHECK MAGIC NUMBER

IF NOT CORRECT
NUMBER FOR TYPE

THEN INVALID

VALID – ACCESS DATA

CRASH IF
POINTER INVALID

12

So developer uses invalid access – so what?

● Bug reports always filed for an EFL bug
● Backtrace always ends inside EFL – thus “it must be an EFL bug”
● EFL developers very often debugging applications, not EFL

● Need to prove application is at fault – time consuming
● Wastes EFL developer time
● Means apps crash while a user is busy doing something important
● Really annoying to keep explaining what backtraces say

● Need a solution that is safer...

13

EO – Object safety added in

● Object “pointers” are reference IDs

0x803e00f4

AFTER

ACTUAL
MEMORY

OF OBJECT
DATA

0x80 0x3e0 0x0f4
GENERATION TABLE NUMBER ROW NUMBER

CHECK GENERATION COUNT MATCHES THE GENERATION COUNT VALUE STORED
IN THE TABLE ROW

LOOKUP TABLE NUMBER IF IT EXISTS

CHECK ROW NUMBER NOT NULL

IF ROW POINTER NOT NULL AND
GENERATION COUNT MATCHES, THEN

FOLLOW POINTER

ALWAYS VALID – ACCESS DATA

TABLES MMAP()ED ANONYMOUS MEMORY AWAY FROM
HEAP (MINIMIZES CORRUPTION)

ALSO SUPPORT MPROTECT() FOR READ-ONLY TABLES

14

So a pointer is not a pointer?

● Yes. Pointers only used for compatibility :(
● On 32bit, 9 bits are for Generation count, the rest for table + row

● One in 512 chance of a false positive on valid row
● On 64bit, 29 bits for Generation count, the ret for table + row

● On in ~500 million chance of a false positive on a valid row
● Even if a false positive sneaks through

● We found A valid object – maybe right, maybe wrong
● If wrong object, type checks happen due to runtime method lookup

● Worst case – you manipulate an unitended object – no crash
● No worse than before

15

Runtime dynamic method lookup?

● Yes. If method is invalid for the class – it is skipped
● All methods can be batched to save object lookup cost

ACTUAL
MEMORY

OF OBJECT
DATA

CALL METHOD CLASS
CHECK IF CLASS EXISTS IN

CLASS TABLE (ALL INHERITED
CLASSES)

IF DOESN'T EXIST (OBJECT
DOESN'T DEFINE OR INHERIT

THAT CLASS/INTERFACE)
RETURN SAFELY

CALL REAL METHOD SAFELY

So... C++ eh?

17

So what has this got to do with C++?

● Just like C++...
● EFL now has constructors and destructors
● EFL can inherit methods from parents
● EFL can override methods that are inherited
● EFL can multiply inherit and even do mixins directly

● Also like Javascript, LUA etc.
● EFL objects are reference counted for auto-cleanup when all references go
● EFL objects have properties as well as methods
● EFL can just tag data on objects like simply adding values to a table by key

18

C & C++ style with EFL

obj->text_style_set(style);

obj->text_set(text);

obj->gui_size_get(&width, &height));

eo_do(obj,

 efl_text_style_set(style),

 efl_text_set(text),

 efl_gui_size_get(&width, &height));

eo_do(obj, efl_text_style_set(style));

eo_do(obj, efl_text_set(text));

eo_do(obj, efl_gui_size_get(&width, &height));

C style “do” call – one method per call

C style batched calls – 3 methods per call

C++ style object calls

What this looks like

20

But EFL is C, not C++ ?????

● We now write out class definition in “eo files”
● Eolian generates the boilerplate C + EO code to create a class etc.
● From this data Eolian generates C++ headers

● Calls match 1:1 from C classes/methods/properties to C++
● These C++ classes can be inherited from etc. like normal C++
● Since they are only headers only, the C++ ABI is in fact C, not C++

● This avoids all the common C++ ABI issues
● We have standardized on C++11 STL for base datatypes

● Provided manual bindings between EFL Lists, Hashes etc. to STL ones

21

C++ :(

● To be honest – EFL devs don't like C++
● We're never going to port EFL to C++

● Over or dead stinking corpses
● BUT... we understand others like C++

● And a lot of them keep asking us, as we try our best to ignore them
● And they get upset when they can't just “new” and “delete”

● So we're willing to help and oblige (GASP!)
● As long as we don't have to move to C++

● And we have to do little to no maintenance to keep the support

22

No maintenance? ORLY?

● Eolian C++ generates the C++ headers directly from .eo files
● Whenever we add classes or methods, they get added with a re-run

● The same method will add LUA bindings
● Same classes, methods and properties as C/C++
● Auto-generated just like C++
● Provides an alternative to native
● Acts as a test case for dynamic languages

● Once proven and useful it can expand to Javascript (v8), Python and others

● And yes – we're being optimistic

23

Sample eo file
class Tst (Eo_Base)

{

 eo_prefix: tst;

 data: Tst_Data;

 properties {

 name {

 set { /*@ This sets the name of the tst object */

 }

 get { /*@ This gets the name of the tst object if set */

 }

 values {

 const char *name; /*@ The name of the tst object as a C string */

 }

 }

 size {

 set { /*@ Sets the size of the object, on success returns EINA_TRUE */

 return Eina_Bool; /* returns EINA_TRUE on success */

 }

 get { /*@ This gets the size set */

 }

 values {

 int size; /*@ The size in pixels */

 }

 }

 }

 methods {

 activate { /*@ This method will activate the tst object, and when

 * called, any events listening to activated will be

 * triggered */

 params {

 @in int number; /*@ The number of pixels to activate */

 @in const char *string; /*@ A label to display on activation */

 }

 return Eina_Bool; /* If activation succeeds, returns EINA_TRUE */

 }

 disable { /*@ This disables the tst object to the level intidicated */

 params {

 @in int level; /*@ This is the disabling level to use */

 }

 }

 }

 implements {

 Eo_Base::constructor;

 Eo_Base::destructor;

 }

 events {

 activated; /*@ When the tst object has been activated */

 disabled; /*@ When the tst object has been disabled */

 }

}

24

Using the class in C
#include <Eo.h>

#include "tst.eo.h"

int main(int argc, char **argv) {

 eo_init(); // init eo

 Eo obj = eo_add(TST_CLASS, NULL); // create a new object of the TST class

 eo_do(obj,

 tst_name_set("Smelly"),

 tst_size_set(100));

 eo_do(obj, tst_activate(37, "Chickens"));

 eo_do(obj, tst_disable(99));

 eo_del(obj); // delete the created object

 return 0; // exit cleanly

}

25

Using the class in C++
#include <Eo.h>

#include "tst.eo.hh"

int main(int argc, char **argv) {

 efl::eo::eo_init init; // init eo

 tst *obj = new tst(NULL); // create a new object of the TST class

 obj->name_set("Smelly"),

 obj->size_set(100),

 obj->activate(37, "Chickens");

 obj->disable(99);

 delete obj; // delete the created object

 return 0; // exit cleanly

}

Why should yo
care?

27

Why care or get excited?

● Developers can choose C or C++
● And eventually LUA and maybe Javascript, Python etc.
● Maintains the same API and behavior just with language syntax changed
● Lets you choose what is easier for you

● Provides for a C++ API with minimal ABI issues
● Helps you create software more easily
● Provides more safety for your Apps at runtime even with mistakes
● Provides for another object model for the C world
● Coming to Tizen … soon
● Makes everything more complex, and we love complexity :)

Q&A?
Flames?
Rants?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	End Slide
	Slide 29

