
Crosswalk on IoT

Kenneth Christiansen, Sakari Poussa, Tiago Vignatti

2

● What IoT means to Crosswalk from the graphics perspective
● Introduce a new graphics architecture for IoT
● Next challenges

Session goals:

Tizen graphics,
IoT and
Crosswalk

4

Tizen Graphics

• Tizen is not much different than traditional Linux distros:

• In short: kernel Linux + GL driver + X11 or Wayland
– Native App: toolkit (EFL or Qt)

– Web App: runtime (WebKitEFL or Crosswalk)

• GL graphics context requires several megabytes! (sorry, no reference)

– Problems on constrained platforms:

● memory allocation: GPU driver resources, texture storage, double-buffering etc

● memory bandwidth: texture upload of bitmaps

5

IoT

• IoT display-based devices:
– medical monitors, smartwatch, wrist, etc

• hardware are not very capable:

– CPU < 1 GHz, memory < 512 MB, no GPU

• system is somewhat simple:
– e.g. one fullscreen web app at each time

● simple window management

● simple UI

6

Crosswalk (1/2)

• Crosswalk is based on Blink and Chromium

• It implements Tizen Web APIs for system control

• Chromium has a new platform backend system called Ozone:
– Crosswalk on Tizen IVI uses Ozone-Wayland

– Ozone-Wayland implements Wayland platform for Chromium

– There are other Ozone implementations like KMS/DRM, caca, testing, etc

7

Crosswalk (2/2)

• We believe that Crosswalk could encompass all IoT needs!
– Web is the whole system

– a lean graphics architecture is required though

a new graphics
architecture for
IoT

9

Solving Tizen Graphics issues for IoT

• Graphics architecture for IoT has the desired features:
1. Able to run in constrained platforms

2. Simple window management

3. Simple UI

• Solution:
– remove the window system and toolkits

● why we'd need it given that apps are fullscreen and Web based?

– choose renderer method

● e.g. using software rendering instead GL we potently could reduce memory
problems

10

How Chromium helps? (1/2)

• Ozone:
– Chromium Ozone backend system lets us to easily switch the platform implementation

– We'd use Ozone KMS/DRM through software composing backend for constrained
platforms

● Ozone KMS/DRM uses double-buffer Skia surfaces, so it's quite capable

11

How Chromium helps? (2/2)

• Aura:
– Aura is the UI framework for basic window and input events

– Aura windows only have one graphics surface layer each (so window management is
not really needed at the window system level!)

• Views:

– Views is Chromium's internal widgets toolkit based on Aura

– If desired, more complex windows decorations can be done using Views (no external
graphics toolkits are needed!)

12

Crosswalk graphics architecture for IoT

13

Conclusion

• The new architecture is meant for IoT
– constrained hw platforms where the Web takes over the whole system

• Less overall complexity due code reduction
– Easily we save at least 1 million LoC (window system + toolkits)

• Proof-of-concept:
– https://github.com/tiagovignatti/crosswalk/commits/embedded

– Using Tizen Common (“Generic”)

https://github.com/tiagovignatti/crosswalk/commits/embedded

Next Challenges

15

Next Challenges

• Drawback: no Native App option anymore for Tizen
– Everything goes through Chromium architecture

– What about NaCl?

• Are we fine with Web performance for the UI?

• Send code to upstream Tizen and Crosswalk

Questions? Thank
you!

	Slide 1
	Basic Text
	Section Divider Option 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Example of a Bulleted List for Coding
	Slide 16

