

kdbus in Tizen 3.0

Hyungjun Choi Karol Lewandowski

Samsung Electronics

Agenda

Agenda

- D-Bus vs kdbus
- Motivation and project goals
- First attempts
- kdbus in Tizen 3.0
- Challenges

D-Bus

- Message bus system
- Method Call Transaction
- Signals
- Broadcasting
- Policy
- Activation
- ...

kdbus

Low-level, native kernel D-Bus transport

 All communication between processes take place over special character device nodes in /dev/kdbus.

Receiver buffers

Single copy to destination(s)

memfds

- File descriptor for memory regions
- Zero Copy!
- At 512K zero copy is faster than single copy

D-Bus vs kdbus

D-Bus (It's inefficient)	kdbus (It's efficient)		
10 copies	2 of fewer copies		
4 complete validations	2 validations		
4 context switches	2 context switches		
Suitable only for control, not payload	Suitable for large data (GiB), zero-copy, optionally reusable		

Method Call Transaction (Remote procedure call and reply)

Motivation and project goals

Motivation

- More efficient, always available IPC mechanism
- kdbus may solve our issues with sharing large amounts of data (tested w/ prototypes)

Project goals

- Transparency
 (No need to modify D-Bus based codes)
- Compatible with native D-Bus
- Improve IPC performance of a Tizen product

kdbus performance test results

The measurement was made by performing one thousand of calls and computing a sum of duration of every call.

Method call using libdbus				
msg_size	default [s]	kdbus [s]	diff [s]	diff [%]
4 B	0.371	0.268	0.103	27.763
8 B	0.355	0.266	0.089	25.070
4 KB	0.438	0.310	0.128	29.224
8 KB	0.546	0.351	0.195	35.714
16 KB	0.707	0.447	0.260	36.775
64 KB	1.937	0.977	0.960	49.561
512 KB	16.88	9.816	7.064	41.848
1024 KB	37.239	22.384	14.855	39.891

Legacy D-Bus in Tizen

kdbus-enabled dbus-daemon

Legacy architecture

D-Bus libraries in Tizen

- Tizen provides limited number of D-Bus binding libraries
 - Most of these build on libdbus-1 foundation
 - Currently only libdbus-1 and glib2 need to be ported to kdbus

Tizen 3.0 architecture with kdbus

Tizen 3.0 architecture with kdbus

systemd

- systemd >= v209 handles kdbus natively:
 - Creates and manages both system and user buses
 - Transparently handles transition from legacy dbus to kdbus (service generators, service masking) at boot time
- Additionally provides:
 - sd-bus (libsystemd) library supporting both AF_UNIX and kdbus transports
 - bus-proxyd compatibility AF_UNIX socket for legacy clients
 - bus-driverd "org.freedesktop.DBus" support (but see following slides)

Native glib (gio) kdbus port

- All major features present:
 - Exchanging messages, broadcasting, signals, name reg., etc.
 - Makes use of kdbus-specific functionalities (memfd, bloom filters)
- No changes in glib's API
- Development closely follows upstream
- Progress tracked on bugzilla.gnome.org
- glib RM agreed to include it in next dev. version of glib

Native libdbus-1 port

- Originally designed to work with kdbus-enabled dbus-daemon
- Currently under active redesign & development
 - Not up to date with current day kdbus
 - Uses "dbus-1" serialization on bus instead of GVariant
- Requires a lot of work to become in shape for upstreaming

Security policy

- Simplified policy architecture
 - New Tizen services tend to perform policy checks by themselves (via policykit, cynara, etc.)
 - Dropping dbus-daemon allows us to kill overly complicated DBus policies
 - Per-destination policy checks fit perfectly in kdbus model
 - Existing Smack policies can be reused
- Requires simple extensions to Linux LSM and kdbus

kdbus-Ism security hooks

- New set LSM hooks
 - security_kdbus_send()
 - security_kdbus_recv()
 - security_kdbus_talk()
 - security_kdbus_name_acquire()
 - security_kdbus_name_list()
 - •
- Preliminary SMACK implementation suggested
- Ongoing discussion with kdbus, SMACK, SELinux communities

kdbus to Tizen 3.0 (summary of changes)

- Introducing kdbus requires:
 - Upgrading systemd >= 209 (most likely v212)
 - Introducing kdbus kernel module
 - Patching glib (gio) for native kdbus port
 - Patching libdbus-1 for native kdbus port
 - Patching kernel(s) and kdbus for kdbus-lsm security hooks
- kdbus support to be enabled at build time
- Patches available on kdbus-integration branches

Challenges

kdbus, systemd evolving rapidly

- No API/ABI guarantees
- Major features still under active development:
 - memfd moving to out of kdbus to generic kernel facility
 - bus-driverd dropped from systemd > 212
- Integration with Linux kernel might drastically change landscape

Future work

- Tizen is going to use systemd-based kdbus stack only
 - kdbus-enabled dbus-daemon future is uncertain
- Native libdbus-1 kdbus port still requires a lot of work
- kdbus-lsm patches:
 - Long way to integration
 - kdbus' ability to "own a name" doesn't map well to SMACK model
- No known good methods for comprehensive system-wide testing

Beyond Tizen

- systemd >= 213 will drop bus-driverd
 - org.freedesktop.DBus will no longer be available on kdbus (while retaining it on legacy socket)
 - Lack of org.freedesktop.DBus makes kdbus to not cover all D-Bus spec requirements
- Upstream proposed changes to existing libraries
 - Introduce user and machine bus types where kdbus might be available
 - Calling org.freedesktop.DBus would be explicitly disallowed on these buses
- The above changes make kdbus opt-in, not a transparent replacement for D-Bus

References

- glib kdbus port
 - https://bugzilla.gnome.org/show_bug.cgi?id=721861
- Original kdbus-enabled dbus-daemon and libdbus-1
 - git://review.tizen.org/platform/upstream/dbus kdbus-dev
- libdbuspolicy-1 library
 - git://review.tizen.org/platform/upstream/dbus libdbuspolicydev
- kdbus-lsm patches
 - git://github.com/lmctl/linux kdbus-lsm-dev
 - git://github.com/lmctl/kdbus kdbus-lsm-dev

References

- Rationale behind dropping bus-driverd
 - http://permalink.gmane.org/gmane.comp.sysutils.systemd.devel/1 8514
 - https://bugzilla.gnome.org/show_bug.cgi?id=721861#c24
- D-Bus vs kdbus comparision
 - http://mindlinux.wordpress.com/2014/02/01/anatomy-of-kdbus-len nart-poettering/
- Tizen
 - http://en.wikipedia.org/wiki/Tizen
 - https://developer.tizen.org/

