
UI, Graphics & EFL

Carsten Haitzler
Principal Engineer

Samsung Electronics Korea
c.haitzler@samsung.com

Founder/Leader Enlightenment / EFL

mailto:c.haitzler@samsung.com

Display System
Overview

4

Graphics

5

Graphics – Old-School FB

• In the old days we used the framebuffer directly

• If you do embedded work this will be familiar

• Featurephones pretty much worked this way
– Apps “own” the screen (direct drawing)

6

Single Buffer - Flickering

CPU or 2D HW
generate new
pixels / Copy
around FB

7

Double buffer – copy region

Copy with CPU
or 2D blitter HW

CPU or 2D HW
generate new
pixels

8

Double buffer – swap buffers

Swap
buffers

CPU or 2D HW
generate new
pixels

Back buffer Front buffer

9

X11 – FB Sharing (Flickering or Copies)

• Created in the 1980's to share FB
– Also share over a network

– Allow acceleration of operations over the network

• Multiple windows on screen at once

• Multiple screens

• Multiple bit depths at once

• Complex

• Everything is rectangles

• Drawing server-side via requests

10

X11 Drawing

11

X11 Drawing

12

X11 Drawing

13

X11 Drawing

14

X11 Drawing

15

X11 Adds compositing

• Compositing added via several extensions
– Composite, Damage, Fixes

• Forces renders to go to off-screen pixmap per window

• Allows compositor to get events on changes and pixmap IDs

• This allows compositor to add effects like shadows, zooms

• Downside – can't affect events (go direct to target client)

16

Compositing

17

Compositing

18

Other OS did the same

• Windows XP to Vista+ added Compositing

• Mac OS9 to OS X added Compositing

• Compositing has the same core ideas across them all
– All drawing to windows now goes to backing buffer

– Compositor can access backing buffers & updates

– Compositor process composes the screen using buffers

– This composition process can add effects & transparency

• Tizen is composited!

19

Tizen 2.x Display

• X11 + Compositor (Enlightenment 0.17)
– Except IVI (Weston/Wayland)

• It is a Full Desktop WM + Compositor underneath
– Windows can (and will resize)

– Windows can move around

– Windows may not fill the screen

– You can have many windows

• Only some policies (eg mobile) force things to be simpler

– In most cases resizes don't happen often

– Windows tend not to move

20

Tizen 2.x WM

21

Tizen 2.x WM

22

Tizen 3.x Display

• BOTH X11 and Wayland will be supported
– Moving to Wayland and dropping X11

● Do not assume / expect or use anything X11
● Abstractions exist to hide X11 – use them

– IVI Exception – Wayland ONLY

23

Wayland

• Far simpler than X11

• Everything is a buffer (or surface) instead of a rectangle

• Composited display ONLY
– Designed to allow fast-path zero-copy swaps

● Fullscreen apps (If multiple HW layers, then windows)

• Weston is the current demo compositor

– More desktops adding support as compositors

● GNOME, KDE, Enlightenment …

• Major toolkits now have good Wayland support

– EFL, Qt, GTK+, SDL, ...

24

Wayland

25

Why Wayland

• Security possible (X11 is insecure by design)

• Compositor + WM + Display Server in a single process
– Allows for input transforms easily

– Far more efficient than multiple processes

– Lower power consumption

• Compositing model more cleanly allows HW layer usage

– YUV or RGBA layers can be easily supported (Subsurface)

• Leaner

– Throws out legacy server-side rendering

– Clients self-render these days on X11 anyway

26

Why Wayland

• Input method support is integral, not an afterthough

• DND is integral and not an afterthought

• Provides far more client isolation than X11

• Far less code to support

• Less time to market to bring up new GPUs and boards

• Built around open standards like DRM, KMS etc.

• Much better chances to ensure “every frame is perfect”

• Still client-server for commands + signaling (UNIX socket)
– Buffers are zero-copy (only handles sent via IPC)

Application
Toolkits

28

Building apps for 1st parties

• Can access any layer (X11, Wayland, FB etc.)
– Keep in mind portability and moving from X11 to Wayland

• Can use OpenGL directly

• Can use EFL Directly

• Can use Qt Directly

• Etc.

29

Building apps for 3rd parties

• Use HTML5 + Webruntime
– Provides HTML5 DOM / CSS / JS

– Forces most of App to also be in JS

– Slow startup and heavy memory footprint

– Performance tradeoffs for development speed/environment

30

Building apps for 3rd parties

• C++ Tizen::Native API Deprecated

31

Building apps for 3rd parties

• New Tizen Native C API is here
– As of Tizen 2.3

– Many APIs covering all aspects of Tizen Devices

– UI API is EFL

● EFL 1.7 + Patches (some EFL libs only)

• C Language as core support

– Of course C++ works as well

EFL

33

What is it?

• Stands for: Enlightenment Foundation Libraries

• Was created as part of building Enlightenment
– http://www.enlightenment.org

– “We need these things and nothing else provides them”

– “Maybe they will be useful to others too?”

● Made them libraries instead of compiled-in code

• Were built keeping “Embedded” in mind

• Created & maintained by a very small and focused team

• 100% Open source (development model, community & code)

http://www.enlightenment.org/

34

What is it?

• Today upstream is about 1,000,000 lines of C (1.11)

• Is a C-centric library with C APIs

• Contains sub-libraries with specific names, functions & layers
– Elementary – High level API + Widgets

– Evas – Core scene graph + rendering

– Ecore – Mainloop, events, messaging & animation / timing

– Eina – Data structures and Low level

– Edje – Canvas object “meta” files from on-disk themes

– … and others

35

Blocks!

Kernel / libc / other low level libraries

X11 Wayland

Evas Ecore Eina

Edje

Native App

HTML5 App

Web
RuntimeElementary

* Rough Block Diagram
NOT LITERAL

36

Mainloop Model

• EFL is designed to be Mainloop-centric

• Mainloop handles application state and UI in ONE THREAD

• Child threads can do work async and message mainloop

• Thread worker pool APIs provided for you

• Encourages thread isolation of data / tasks

• Encourages serialisation of current state into Mainloop
– Implicit synchronisation of state changes

– Fewer locks needed

– Fewer thread bugs

37

Mainloop

Wake up...

Gather events

Call event callbacks

Handle timing callbacks

Render / Evaluate Changes

Init App & start Mainloop

Exit App and shutdown

Thread Worker

Thread Worker

Work

Work

Work

Result back to Mainloop

Result back to Mainloop

Implement UI change
for thread result

Implement UI change
for thread result

Add work to
thread queues

Custom Thread

Changes / messages back to Mainloop

38

Widgets

• Buttons

• Scrollers

• Entries

• Check buttons

• Radio buttons

• Lists

• Boxes, Tables, Grids

• Menus

• Toolbars

• … and much more

39

Scene Graph

• Unlike almost everywhere else, there is no “rendering” API

• But there is the SCENE GRAPH (Retained Mode Rendering)

• A scene graph describes your window content by objects
– Every object is a primitive

● Text, Image, Rectangle, Container, …
● Buttons, Tables, Boxes, Lists, ...

– Do not redraw. Modify objects to achieve changed scene

– Scene graph figures out how to redraw – not application

– Scene graph figures out what changed to minimize work

– More objects == more cost to figure out changes :(

40

Scene Graph

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object Object

Object

Object

Object

Object

Object

Object

Object Object

41

Scene Graph

• Every object has geometry

• Every object has stacking (above/below a sibling)

• Some objects (Smart objects – Containers) can have children

• Every object that is a toplevel (no parent object) is in a Layer

• Layers have absolute stacking priority (0 below 1, 1 below 2)

• This allows not just spatial arrangement but also Z order

• Z order (stacking) is key to getting some effects/behaviors

• Due to its nature, objects are composed, not “inherited”

42

I lied – you can render

• For vectors use Cairo + Evas Image Object
– Wrap Cairo Surface around Image object pixel data

– Draw to Cairo Surface (can be done in thread)

● If doing so in a thread, double-buffer image objects

– Throw out Cairo Surface

– Set pixel data back and give evas region updates for image

• You can use the same technique for any custom pixel data

– Image objects are ARGB8888 pixels

43

I lied – you can render (OpenGL)

• You can “insert” your OpenGL rendering into the scene graph

• Use Elm GLView widget to save you time

• It enforces some “limits” due to it being a scene graph
– Must use Evas GL interface and context handling

– This allows your GL rendering to be zero-copy rendered

● No overhead vs raw rendering (no copies)
● Allows for your GL to have alpha and overlay objects
● Allows canvas objects to overlay your GL rendering

• Makes it easy to add text, widgets, HUD and debug games etc.

• Makes GL portable (GLES2 on all platforms).

44

The future

• Is already here (EFL 1.11 already out)
– Tizen is unfortunately behind EFL releases (Tizen 2.x)

– Tizen 3.x is tracking upstream EFL

• Upstream EFL has lots of improvements and added features

– EO (object infra) for safety and OO in C

– Evas 3D objects

– Filters for Text (and coming – images)

– Optimizations

– Cleanups

– Better Windows / Mac support (porting)...

45

The future

• Video objects...

• C++ API (auto-generated – currently “unstable”)

• LUA app creation + auto-generated API

• Same Python API (auto-generated)

• And so much more...

• http://www.enlightenment.org

• http://git.enlightenment.org

• http://phab.enlightenment.org

http://www.enlightenment.org/
http://git.enlightenment.org/

Q&A

Ask me
ANYTHING

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Basic Text
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

