DEVELOPER CONFERENCE MAY 7-9, 2012

DRM(Direct Rendering Manager) of Tizen Kernel Joonyoung Shim

jy0922.shim@samsung.com

Contents

- What is DRM
- Why DRM
- What can we do
- How to implement
- Tizen kernel DRM
 - Exynos DRM driver
- Future work

What is DRM

- DRM is not Digital Right Management
- Direct Rendering Manager
 - Kernel-level graphics device driver that support Direct Rendering Infrastructure.
 - Direct Rendering
 - An application communicates directly with graphics device driver
 - Display mode setting
 - Graphics memory management

Why DRM

- Can give display experiences similar to PC system
- However, why not use DRM until now
 - DRM was designed for PC
 - Embedded system
 - Low performance
 - No dedicated graphics memory
 - Not one graphics card but separated hardware devices
 - Linux framebuffer driver

Why DRM

- Changed embedded environment
 - Powerful embedded SoCs
 - Requirements
 - Display hotplug & clone, extended mode
 - Unified memory management
 - Direct rendering
 - Varying device control with common interface
- So, we choose DRM for next

What can we do

- Export image data from buffer to the screen
 - Generic display pipeline
 - Buffer \rightarrow CRTC \rightarrow Output \rightarrow Monitor
- Flexible environments with multiple displays
 - Smart Phone and Digital TV
 - LCD and HDMI
 - Possible modes
 - Clone mode (Duplicate display)
 - Extended mode (Dual display)

Scenario: Clone mode

Scenario: Extended mode

How to implement

- Use common DRM core
 - GEM framework
 - For buffers
 - Kernel mode setting
 - To control CRTCs and outputs
- Implement hardware specific parts
 - Wrapper common DRM core
 - Support each different devices driver

DRM of Tizen kernel

- Tizen supports several processors
- However, the current version supports Exynos SoCs
- Need Exynos specific DRM driver!

Exynos DRM driver

- DRM driver to support graphics hardware of Exynos SoCs
- First ARM SoC graphics driver to use the Direct Rendering Manager
- Merged into the mainline linux 3.2 kernel first
- linux/drivers/gpu/drm/exynos

Features

- KMS(Kernel Mode Setting)
- GEM(Graphics Execution Manager)
- Fbdev(linux framebuffer)
- Specific ioctls
- Pageflip
- HDMI hotplug

Exynos graphics devices

- Display controller
 - Transfer image data in system memory to external LCD interface
- HDMI
 - HDMI v1.3 / v1.4
- G2D
 - The 2D graphic accelerator that supports Bit Block Transfer
- Virtual display device
 - Provide virtual display to user
 - Can be used for wireless display

Architecture

KMS (Kernel Mode Setting)

- A method for setting display resolution, frequency and depth in the kernel space
- Can change mode without X server reloading
- Include framebuffer and output management code
- KMS in the Exynos DRM
 - CRTC used commonly
 - Encoder and Connector with hardware specific callbacks
 - Plane support (control multiple window layers)
 - Default FB and user FB

GEM (Graphics Execution Manager)

- Developed by Intel to manage graphics memory
- Memory allocation and freeing
- Command execution
- Share graphics memory by multiple applications
- Exynos SoCs do not have dedicated graphics memory
 - Implement buffer management
 - Memory type
 - Physically Continuous memory
 - Physically Non-Continuous memory

SUB driver

- DRM is not aware of graphics devices driver
 - Each graphics device driver registers sub driver data
 - Exynos DRM driver manages sub driver data to linked list
 - Sub driver data must be registered when Exynos DRM driver is probed
- Manager
 - The interface to communicate with graphics devices driver
 - Delivered to Encoder and Connector
 - Operation callback functions

Future work

- Support more Exynos graphics devices
 - Rotator
 - Post processor
 - G3D
- Update features
 - IOMMU support
 - DMA-buf support
 - HDMI / Plane update
- The updating patches will be posted to dri-devel ML

References

- http://dri.freedesktop.org/wiki
- http://www.x.org/wiki/Development/Documentation/HowVi deoCardsWork
- https://wiki.archlinux.org/index.php/KMS
- http://www.kernel.org/doc/htmldocs/drm.html
- http://elinux.org/images/7/71/Elce11_dae.pdf

TIZEN[™] DEVELOPER CONFERENCE MAY 7-9, 2012