
Web Physics: A
Hardware Accelerated

Physics Engine for Web-
Based Applications

Tasneem Brutch, Bo Li,
Guodong Rong, Yi Shen, Chang Shu

Samsung Research America-Silicon Valley

 {t.brutch, robert.li, g.rong, c.shu, yi.shen}@samsung.com

2

Web
Physics

•  Transparent access to native 2D physics engine through JS APIs.
•  OpenCL accelerated 2D Physics Engine (Box2D-OpenCL).

Motivation •  High performance, interactive compute & graphics apps on mobile
•  Transparent & efficient access to acceleration from web apps.

Goals •  Cross-platform, portable, accelerated, robust & flexible

Usages •  Real time mobile gaming; Compute intensive simulation;
•  Computer Aided modeling; Physical effects & realism;
•  Augmented Reality; Real-time big data visualization;

Approach

Hybrid Web Physics approach:
•  Accelerate using native multicore hardware & open parallel APIs.
•  Expose parallelism through JS APIs to web applications.

Accomplis
hments

•  Web Physics JavaScript API Framework (Web Physics JS APIs)
•  OpenCL accelerated 2D Physics Engine (Box2D-OpenCL)
•  JavaScript Physics Engine (Box2DWeb 2.2.1 APIs)

Web Physics Summary

OpenCL Accelerated
Box2D--OpenCL

Native Physics Engine

Web Physics JS
Bindings

Multicore
CPU

Manycore
GPGPU

OpenCL Device Driver

Native
Apps

JavaScript Libraries

Games Media
Apps

Web API

Web
Apps

Web Physics
Approach

4

Web Physics Overview

Architectural
Decision Reasoning

Accelerated
Box2D

• JS performance a concern for high compute use cases.
• OpenCL parallelization API for heterogeneous multicore
devices (CPU, GPU) can provide needed performance.

JavaScript
bindings for
physics
engine APIs

• Portable Web APIs for compute intensive web apps.
• Cross platform application developer support
• Transparent access to accelerated library, without requiring
parallelization of apps.

Modular
architecture

• Incremental parallelization of physics engine pipeline
• Ease of testing.

Preserve
Box2D open
source APIs

• Leverage existing ecosystem: To ensure that existing apps
using Box2D physics engine can use Box2D-OpenCL

5

Web Physics Requirements

1.  Transparent and efficient access to acceleration on client through JS APIs, from
Web applications:
•  JS Bindings implemented in WebKit-based browser engine

2.  Near-native performance for high compute web simulation:
•  Hybrid approach: Access to accelerated native physics engine through JS bindings
•  <= 1.5X performance impact from JS binding, relative to native physics engine

3.  Full feature support, and no API change:
•  Complete Box2D features and API support in accelerated native physics engine
•  No API change: Box2D-OpenCL APIs should be identical to those of Box2D 2.2.1

4.  Complete JavaScript API support in JS physics engine for benchmarking
•  Box2DWeb 2.2.1 JS physics engine supporting all Box2D 2.2.1 features.

5.  Acceleration using open parallel API for heterogeneous platforms:
•  OpenCL accelerated physics engine for multicore CPU and GPGPU (Box2D-OpenCL)

JavaScript
Bindings

7

Web Physics Architectural Approaches

Plugin-Approach WebCore Approach Inject Bundle
Pros •  Browser portability.

•  Maintainability: Less impact from
physics engine changes

•  Code reusability

•  Best comparative performance.
•  No IPC overhead

•  Usable by native and web apps
•  Portability
•  Maintainability
•  No IPC overhead

Cons •  IPC communication expensive
between plugin & web process

•  Difficult to Maintain
•  More complex

•  Complexity
•  Not Reusable across browsers

WebKit

Browser/
Web Runtime

WebCore NPAPI
Framework

Web Applications

Box2D
Plugin

Binding

Box2D
Web API

Box2D-
OpenCL

WebKit

Browser/
Web Runtime

WebCore
Box2D

JS
Binding

Box2D-OpenCL

JavaScript
Core

Web Applications
Box2D

Web API

WebKit

Browser/
WebRuntime

WebCore

Box2D-OpenCL

JavaScript
Core

Web Applications

Box2D JS
Binding

Injected
Bundle

Box2D
Web API

Dynamic
Injection

IPC

8

Box2DWeb 2.2.1 JavaScript Physics Engine

•  Physics Engine written entirely in JavaScript.
•  Existing open source project (box2dweb) had

implemented Box2D 2.1.2 APIs.
•  Box2DWeb 2.2.1 JS physics engine implements

JS APIs corresponding to all Box2D 2.2.1 APIs.
•  Used for benchmarking & comparative analysis.
•  Currently in the process of being open sourced.

JavaScript
Core

WebKit

WebCore

Browser /
WebRuntime

Web Apps

Box2DWeb2.2.1
JS Library

9

Web Physics Binding Implementation
²  IDL code generator features:
+  Constructor overloading
+  Support for constructor-type static read-only

attribute in IDL
•  Patch up-streamed to WebKit.org
•  JSC specific binding classes, functions

generated from Box2D IDLs. Code generator
can support JSC & V8.

²  Wrapper Layer features:
+  Interfaces with native Box2D physics engine. A

glue layer from Box2D native engine to auto-
generated JS binding classes.

+  Most code is JS engine independent
+  Complete support for Box2D classes
+  1:1 mapping to Box2D native objects
+  Preserves Box2D tree structure
+  Callback function support using Listeners
+  Supports DebugDraw

²  Performance overhead <= 1.5x relative to Box2D
−  Includes parsing overhead of JavaScript code, and

binding code overhead
²  Implementation restrictions:
−  Strict type checking, relative to Box2DWeb
−  Native classes & functions written into IDL files, &

their implementation added manually

Web Physics JS Bindings Framework

OpenCL
Acceleration

11

Box2D-OpenCL Parallelization

Collision Detection:
•  Broad Phase and Narrow Phase.
•  Enforces natural physical constraints on

simulated physical objects Detects collisions.
Constraint Solver:
•  Computes velocity and position constraints
•  Updates velocities and positions of bodies
Benchmarking:
•  Collision Detection & Constraints Solver

prioritized for parallelization
•  ~64% of total time spent in Collision

Detection stage
•  ~21% of time spent in Broad Phase
•  ~43% in Narrow Phase

•  ~35% of total time spent in Solver

12

Collision Detection – Broad Phase

Goal: Quickly find pairs of objects that might collide each other, and cull out all pairs that cannot
collide each other.
Algorithm: Axis Aligned Bounding Box (AABB) used to approximate objects for fast testing

Sequential Broad Phase:
•  BVH (Bounding Volume Hierarchy)
•  Traverse from top to bottom
•  Good for sequential programs but not

efficient for parallel programs due to low
parallelism in higher levels of BVH

Parallel Broad Phase:
•  SaP (Sweep and Prune) [1]
•  Compute an interval [xi, Xi] for each AABB Oi
•  Sort all AABBs by x_min
•  For all AABBs Oi, execute the followings in

parallel:
•  Sweep from xi to Xi to find all Oj with xj∈[xi, Xi]

and i<j
•  For each Oj, if Oi∩Oj≠∅, output a pair (Oi, Oj)

[1] F. Liu, T. Harada, Y. Lee, and Y. J. Kim, “Real-time collision culling of a million bodies on graphics processing units,” ACM Trans. Graph., vol. 29, no. 6, pp. 154:1–154:8, 2010.

13

Collision Detection – Narrow Phase
Goal: For each pair generated by BP, test whether the two objects collide or not. If
collide, generate a manifold for the pair.
Algorithm: Separating Axis Theorem (SAT) used to test intersection of two objects.

Sequential Narrow Phase:
•  Loop over all pairs
•  Check each pair using

different functions for
different types (e.g.
polygon-polygon,
polygon-edge, circle-
edge, etc.)

Parallel NP (Solution 1):
•  Execute a single kernel for

all pairs, using different
branches for different types
inside the kernel:

 if polygon-polygon pair
 Compute for p-p type

 else if circle-edge pair
 Compute for c-e type

 …

Parallel NP (Solution 2):
•  Execute a multiple kernels

for different type of pairs,
each kernel deal with one
type of pair only.

Ø  Solution 2 has better

performance

14

Collision Detection – Narrow Phase

•  At the end of NP stage, we compact all “valid” pairs (i.e. whose two objects collide with
each other), to the head of the list for the next stage.

A B C D E F G H I J K L M N O P

0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 1

0 0 1 2 2 2 2 3 4 5 6 6 7 7 7 7

B C G H I J L P

input pairs
(from BP)

validity masks
(1-valid, 0-invalid)

exclusive scan results
(bi=a0+a1+…ai-1)

compacted valid pairs

15

Solver
Goal: For each collided contact pair generated by collision detection, solve the
physics constraints and update two bodies’ velocities and positions

1.  Solve velocity constraints iteratively

•  Compute relative velocities between bodies
•  Compute impulse from the relative velocities
•  Update velocities using the impulse

2.  Solve position constraints iteratively
•  Compute penetration and convert it to impulse
•  Update positions using the impulse

Parallel Solver:
Accelerated pipeline for parallel computation of contact constraints

16

Box2D-OpenCL Parallel Solver Architecture

1.  Integrate velocities: Compute all bodies in parallel
•  Apply external forces to update body velocity

2.  Cluster collided contact pairs into different contact groups
•  All pairs in each group do not share the same body
•  Allows parallel computation in each group

3.  Impulse Initial Guess (Warm Start): In parallel for each contact group
•  Last frame’s impulse (if any) is used as an initial guess for current impulse
•  This initial guess accelerates velocity constraint solver

4.  Solve Velocity Constraints parallel for each contact group
•  Compute impulse to solve contact constraints and update body velocities

5.  Integrate Positions for all bodies in parallel
•  Use the new computed velocity to update the position for each body

6.  Solve Position Constraints in parallel for each contact group
•  Compute impulse to update body positions to avoid penetration

Goal: Optimize every component in solver pipeline to get the best parallel performance

17

Parallel Solver Features

1.  Significant performance improvement for high speed simulation:
•  5X performance improvement relative sequential algorithms

2.  Full feature support includes special joints types:
•  Parallel implementation of different joint types: Distance, Joint/Revolute,

Joint/Prismatic, Joint/Pulley, Joint/Gear, joint/Rope, Joint, etc.
3.  Transparency: Parallelization is transparent to JS app developer

•  App developers do not need to know anything about physics engine
parallelization

4.  Easily extensible:
•  Fluid, Smoke, Fracture, Sand, etc.

5.  CPU/GPU parallelization:
•  Portable across different platforms

Experimental
Results

19

Performance Results
Core i7 (8 cores), NVIDIA GT 650M (384 shader cores):

Max speedup for Box2DWeb vs. Box2D+Binding &
Box2DWeb vs. Box2D-OpenCL+Binding:
•  Box2DWeb vs. Binding+Box2D: 8.39X
•  Box2DWeb vs. Binding+Box2D-OpenCL: 23.58X

Tizen 2.2.1:
Max speedup for Box2DWeb vs. Binding+Box2D &
Box2DWeb vs. Binding+Box2D-OpenCL:
•  Box2DWeb vs. Binding+Box2D: 4.75X
•  Box2DWeb vs. Binding+Box2D-OpenCL: 14.88X

Box2DWeb	 vs.	 Binding+Box2D	 vs.	 Binding+Box2D-‐OpenCL	

Box2DWeb	 vs.	 Binding+Box2D	 vs.	 Binding+Box2D-‐OpenCL	
 Box2DWeb	 	 	 	 	 Binding+Box2D	 	 	 	 	 Binding+Box2D-‐OpenCL	

Box2DWeb	 	 	 	 	 Binding+Box2D	 	 	 	 	 Binding+Box2D-‐OpenCL	

20

Box2D-OpenCL Acceleration
•  Performance data for rigid body pipeline of OpenCL parallelized

Box2D-OpenCL (without binding)

BVH
construction

Broad
Phase

Narrow
Phase

Constraint
Solver

BVH List of
Contacts

List of
manifolds

GPU

Box2D on CPU

Box2D on CPU

List of bodies

List of updated bodies

GPGPU
CPU

Sequential

GPGPU
CPU

Sequential
GPGPU
CPU

Sequential

GPGPU
CPU

Sequential

•  Sequential performance
numbers are for Box2D.

•  GPGPU numbers are for
Box2D-OpenCL on GPGPU.

•  CPU numbers are for Box2D-
OpenCL on multicore CPU.

•  Tested on system with Core i7-3770K CPU, Radeon HD 7770 (640 unified shaders) GPGPU

Conclusion

22

Test Plan

Comprehensive Web Physics Testing

Comprehensive Testing
•  Testing categories:
§  Unit tests
§  Stress tests
§  Code path coverage
§  Benchmarking
§  Demo apps
§  Memory Leak tests
§  Robustness testing

•  Tested on multiple platforms

Test Type Description
1 Unit Tests for WP

JavaScript APIs Tested for functionality and correctness

C
om

plete

2 Stress Testing Repetitive construction & destruction of classes.
Continuous extended execution

3 Code Path Coverage
Testing

Native and JS applications to test Box2D, Box2D-
OpenCL & Web Physics bindings for code coverage

4 Benchmarking &
Performance Analysis

Port of Web Physics bindings to Tizen. Benchmarking
& performance analysis

5 Demo apps for testing Demo applications for Web Physics (Magic Sands,
glBrownian, Touch&Play)

6 Memory Leak testing
Static & dynamic testing (using Valgrind & developer
tool). Box2D & Box2D-OpenCL tested with native & JS
demos

7 Robustness testing Negative test cases. Testing with invalid and
insufficient input.

23

Conclusion

²  Web Physics and Box2D-OpenCL results:
ü  OpenCL accelerated physics engine, with web-based JS interface
ü  Box2D-OpenCL: OpenCL accelerated rigid body pipeline. Exposes same API as Box2D
ü  JS Physics Engine (Box2DWeb 2.2.1): Soon to be open sourced
ü  Web Physics JS bindings & Box2D-OpenCL optimized for Tizen.
ü  Box2D-OpenCL open sourced (contributions to Box2D-OpenCL are invited)

https://github.com/Samsung/Box2D-OpenCL

Ø  The presenters would like to acknowledge and thank,
§  Simon Gibbs for project guidance
§  Braja Biswal, Sumit Maheshwari, Gajendra N. for contributions to testing & bindings &

development of demo applications
§  Linhai Qiu and Chonhyon Park for contributions to parallelization

Thank you!

