
How to Use/Hack zChaff SAT
Solver?

Yinlei Yu
(yyu@princeton.edu)

Outline

Purpose of the Talk
zChaff Algorithm Revisited
Using zChaff
zChaff code explanation
Summary

Purpose for this talk

Not a formal explanation of zChaff
A guide on how to use zChaff
Break down the zChaff code
Point out places you need to modify
Provide some details of code that you may
ignore

zChaff Algorithm Revisited

Flat clause database
Two literal watching scheme
VSIDS decision strategy
Conflict clause generation
Non-chronicle backtracking

Using zChaff

Invoking zChaff in command line
– Basic format:

zchaff –t time_limit CNF_file.cnf

– CNF file is representing a Boolean formula in
conjunctive normal form

– zChaff can find a satisfying assignment for the
CNF file or prove that such assignment doesn’t
exist.

CNF File format

Comments – a line start with ‘c’
Prelude: A line ‘p cnf num_of_vars
num_of_clauses’ indicate the start of the CNF
content

– num_of_vars is the number of variables used in the formula
– num_of_clauses is the number of clauses used in the

formula

CNF Format (cont’d)

Variables and Literals
– Variables in CNF are expressed as numbers from

1 to num_of_vars
– Literals: variables or their inverse.

The inverse of a variable is expressed as the negation of
the number for the variable.
e.g.: a 6 means an occurrence of variable x6 and a -6
means an occurrence of variable x6’

CNF Format (Cont’d)

Clauses
– A Clause is a line of literals separated by space

and ended with a 0
– Example:

1 6 -10 3 -9 -2 0
(x1+x6+x10’+x3+x9’+x2’)

A line with a single 0 denote the end of the
CNF file.

Using zChaff with interface functions

1. Initialize a SAT solver.
SAT_Manager SAT_InitManager(void);

2. Set the maximum CPU time (in seconds)
void SAT_SetTimeLimit (SAT_Manager mng, float

runtime);

3. Set the number of variables
void SAT_SetNumVariables(SAT_Manager mng, int
num_vars);

Using zChaff with interface functions

4. Iteratively add clauses until all the clauses are added
– void SAT_AddClause (SAT_Manager mng, int *clause_lits, int

num_lits);
5. SOLVE IT!! Get result from the return of SAT_Solve.

int SAT_Solve (SAT_Manager mng);
6. Check the result, if satisfiable, obtain the satisfying

assignment
– int SAT_GetVarAsgnment (SAT_Manager mng, int v_idx);

7. Free the SAT solver instance
– void SAT_ReleaseManager(SAT_Manager mng);

Using zChaff with interface functions

All the interface functions are in SAT.h while some
tuning functions are in chaff_tune.h (Currently) don’t
need to use chaff_tune.h
Check sat_solver.cpp as an example of using
interface functions

Overview of zChaff Code

Several vital parts
– Variables and clauses representation and access

zchaff_base.h

– Clause Database management
CDatabase (zchaff_dbase.h, zchaff_dbase.cpp)

– Core Solver
CSolver (zchaff_solver.h zchaff_solver.cpp)

Overview of zChaff Code

Core Solver break down
– Preprocessing

preprocess()
– Core DPLL loop

real_solve()
– Decision

decide_next_branch()
– Binary Constraint propagation

deduce(), set_var_value()
– Conflict Analysis

analyze_conflicts() conflict_analysis_firstUIP()
– Periodic tasks

run_periodic_functions() (run before each decision)

Overview of zChaff Code

Core Execution Loop (simplified)
– preprocess();
– while(1){
– run_periodic_functions();
– if (decide_next_branch())
– while (deduce()==CONFLICT) {
– if (analyze_conflicts()< 0)
– return= UNSATISFIABLE;}
– else return SATISFIABLE;}

Clause and variable management

Clauses are implemented as an STL vector of class
CClause
Each clause has an index, a pointer to its first literal.
Variables are implemented as an STL vector of
CVariable
Each variable has two watch lists (for two literal
watching), assigned value(value()) decision level
(dlevel(),-1 for undecided)
The contents of clauses and variables are accessible
by functions

Clause and variable management

Literals in all clauses are put in a linear array of
CLitPoolElement (an 32bit integer, in fact).
A normal literal is expressed as bit fields like below

– Bit 2(s) is the sign of the literal
– The two w’s stands for literal watching and direction for searching
– Bit 30-3 are the variable ID of the literal

A negative number is the negation of the clause ID

You can access literal contents with methods in class
CLitElement
s_var() is a literal which is composed as 2*var_id + sign

0 var id s w w
31 30 … 3 2 1 0

Database Management (CDatabase)

The clause database will grow when conflict clauses
are added
Literals of a clause is cleared to zero and the clause
index is invalidated and put into a free-list when the
clause is being deleted. (mark_clause_deleted)
Database compaction is done whenever the
database need to expand, the clause pointers,
watches, etc. will be adjusted accordingly
(compact_lit_pool)

Implication Queue

A queue that stores the assignment of variables to
be applied on the formula
Written in zchaff_impqueue.h but you can just
consider it as a normal queue.
queue is empty -> make decision -> enqueue the
assignment
Queue is not empty -> dequeue the top assignment,
implicate the assignment -> get more implications
into the queue
Conflict in implication -> clear the queue, conflict
analysis, backtrack

Preprocessing

Run before actual solving
Current preprocess
– If a variable has ever used in the formula, if no,

assign it as 0
– If a variable occur only in itself or only in its

inverse form, but not both, pick an assignment
that satisfy this literal

Decisions

A score on every positive and negative form of variables is
maintained.
A literal’s score is increased by 1 when a new conflict clause
contain such a literal
Literal scores are halved after a period of time
A sorted list of the scores is maintained and updated when a
new clause is introduced (CSolver::ordered_vars)
The top unassigned literal is selected as decision
A Satisfiable assignment is found if no such unassigned
variables exists
You can write your own decision procedure!!!!

Decision Levels and Assignment Stack

Decision Level (dlevel()) is the # of unconstrained
decision
(*_assignment_stack)[dlevel] record the decision and
all its implications on dlevel in the sequence of actual
implication.
(*_assignment_stack)[dlevel][0] is the s_var of the
decision.
A implication at (*_assignment_stack)[dlevel][n] rely
on the assignments in previous dlevel or the
implications on (*_assignment_stack)[dlevel][i] i<n

Binary Constraint Propagation

The deduce() keep popping from the
implication queue
No conflict will be popped from implication
queue (unless incremental SAT is running).
Implication by two literal watching (Read
paper!)
– set_var_value_current_dl
– Conflicts will enqueue into _conflicts

Conflict Analysis and backtracking

Check the first conflict
– analyze_conflicts()

Find the FirstUIP cut on the conflict’s implication
graph (DFS traversal mark_vars_at_level)
Decide the backtrack level

– conflict_analysis_FirstUIP()

Forced implication is put into implication queue

Periodical Functions

Decay variable score periodically
– decay_variable_score()
Delete old and unuseful conflict clauses

– delete_unrelevant_clauses()
You can add more!!!

Summary

A chaff for a user’s perspective is presented
The internal structure of chaff code is
described.

Note

Send me email at yyu@princeton.edu or
come to C305 EQuad in case of questions
(609-258-7143)

mailto:yyu@princeton.edu

	How to Use/Hack zChaff SAT Solver?
	Outline
	Purpose for this talk
	zChaff Algorithm Revisited
	Using zChaff
	CNF File format
	CNF Format (cont’d)
	CNF Format (Cont’d)
	Using zChaff with interface functions
	Using zChaff with interface functions
	Using zChaff with interface functions
	Overview of zChaff Code
	Overview of zChaff Code
	Overview of zChaff Code
	Clause and variable management
	Clause and variable management
	Database Management (CDatabase)
	Implication Queue
	Preprocessing
	Decisions
	Decision Levels and Assignment Stack
	Binary Constraint Propagation
	Conflict Analysis and backtracking
	Periodical Functions
	Summary
	Note

