SAT Solver Descriptions: CMUSAT-Base and CMUSAT

Himanshu Jain
CMU SCS, Pittsburgh, PA 15213

ABSTRACT

CMUSAT-Base is a satisfiability (SAT) solver for formulas expressed
in conjunctive normal form (CNF). It uses the DPLL algorithm to
decide the satisfiability of CNF formulas. The basic DPLL algo-
rithm is enhanced using various standard techniques such as watch
literal scheme for efficient Boolean Constraint Propagation, con-
flict driven learning, non-chronological backtracking, restarts, con-
flict clause minimization, and variable activity based decision. The
new features of CMUSAT-Base are: 1) an optimization to the watch
literal scheme which leads to consistent improvement, 2) simplified
data structures based on standard template library (STL), and 3) ef-
ficient usage of STL to achieve a high performance SAT solver.

Modern SAT solvers employ pre-processing techniques in order
to simplify a given CNF formula before the actual SAT solving
starts. CMUSAT solver combines a pre-processing frontend with
CMUSAT-Base.

1. WATCH LITERAL SCHEME

Current SAT solvers spend 80%-90% of their runtime during
Boolean Constraint propagation (BCP). The aim of this step is to
find out all possible implications (variable assignments) due to a
given decision by using the unit literal rule or report a clause which
is falsified due to the current assignment. A major technique to
make BCP efficient is the watch literal scheme first proposed by
the zChaff [5] SAT solver.

For simplicity let us focus only on clauses with size greater than
one in the description below. In the watch literal scheme two lit-
erals [1,l are associated with each clause C, where [} € C,l, € C.
We refer to literals /1,/; as the watches for a clause C. As long as
both /1 and /; are unassigned there is no need to examine clause
C during BCP. This avoids bringing C from the main memory to
the caches which can require numerous clock cycles. By minimiz-
ing the number of times a clause is brought in the (L1/L2) cache
the watch literal scheme improves the performance of BCP signifi-
cantly.

Most of the existing SAT solvers examine a clause C (or atleast
a part of it) when one of its watches becomes false. Let us assume
that C is stored as an array and C[i] denotes the literal at position i,
where 0 <i < N and N is the number of literals in C. Also without
loss of generality we assume that watches /1,/, for C are stored in
the first two positions, that is, /; = C[0] and /, = C[1]. Now suppose
that /, becomes false. Then the following cases arise:

1. [; is already true and C is satisfied under current assignment.

2. 1 is not true and we are able to find another literal /3 in C
which is different from /;,/; and is not false. In this case /3
replaces /5 as one of the watches for C.

Edmund Clarke
CMU SCS, Pittsburgh, PA 15213

3. [is not assigned and all the other literals in C are false. In
this case /; is implied by C

4. All literals in C are false. In this case C is a conflict clause.

Observe that the four cases above are total and mutually exclu-
sive (when [, is false). We profiled the number of times each of the
above cases occur on a large number of industrial benchmarks and
found that case 1 occurs most often. Table 1 shows the results on a
few industrial benchmarks. The column “#Case 1” counts the num-
ber of times case 1 holds during the SAT solving, and the column
“#Cases 2,3,4” reports the total number of times other cases hold.
Itis easy to see that case 1 occurs most often than all the other cases
combined.

In order to detect when case 1 holds we only need to look at
the watches for a clause and not the entire clause. That is, we can
completely eliminate the need of getting C (or a part of it) into the
cache when case 1 holds.

Benchmark #Case 1 #Cases 2,3,4 Result
goldb-heqgc—desmul 3.8 x10° 1.5% 108 UNSAT
cache-ibm-g-full 6 x108 1.5% 108 UNSAT
aloul-chnl11-13 1.6 x10° 5.6 x 108 UNSAT
ibm-2002-11r1-k45 7.2 x108 4.1%x108 SAT
ibm-2004-04-k100 6.8 x10% 3.6 x 108 SAT
manol-pipe-c9nidw-s 8.2 x108 4.5%108 UNSAT
velev-vliw-sat-4.0-bl | 1.5 x10° 3x 108 SAT
velev-vliw-sat-4.0-b3 | 8.9 x108 1.8x 108 SAT

Table 1: Frequency of various possibilities when one of the watches
for a clause becomes false.

When case 1 holds current state-of-the-art solvers (for example,
MiniSat [1]) looks only at C[0],C[1] as the watches are stored as
the first two literals in the clause. However, since the first two
elements of C are accessed the hardware prefetching mechanism
may also bring other elements of C into the cache which are not
needed whenever case 1 holds.

In CMUSAT-Base C is not touched (read/written) when the case
1 holds. This is done by separating the watches and the clauses as
described in the next section.

2. DATA STRUCTURES FOR ENHANCED
WATCH LITERAL SCHEME

Each clause is assigned a number called clause index. All the
clauses are stored in an array called clauses, and clauses[i] stores
the clause with index i. Another array called warray stores the
watches corresponding to each clause, that is, warrayli] stores the
two literals that are watches for clauses|i].

Index clauses warray

Original problem, 0 1237 ... ol =12
clauses
1 -2-58........ 1| -2-5
2 -135...... 2| -13
I 30
4 | e 4 | -
Learned
clauses 5| 5-378 5| -5-3

Figure 1: Organization of clauses and watches.

For each literal / the watch-list for [contains a list of clause num-
bers where [is being watched. This is in contrast to many existing
SAT solvers such as MiniSat which store the pointers to the actual
clauses in the watch lists.

If [becomes false the watch list for / is scanned. Suppose the

watch list contains a clause number j. Then in order to check
whether the other watch for clauses[j] is satisfied (case 1 holds)
we look at warraylj]. Note that clauses[j] is examined only when
case 1 does not hold.
Example: Figure 1 shows the clauses and warray data structures.
The clauses array stores the original problem clauses in the begin-
ning followed by the learned clauses. For each clause the corre-
sponding watches are present in the watches array (warray). The
watches for clause number 1 are literal -2 and literal -5.

The watch list for literal -1 will contain clause numbers 0, 2.
If literal -1 is set to false, then the watch literal scheme examines
clause number O and clause number 2. In our implementation it is
first checked whether the other watch in these clauses is true or not
by accessing warray[0] and warray[2]. By examining warray[0] we
know that the other watch for clause number O is 2. If literal 2 is
true, then we know that clause number 0 (clauses[0]) is satisfied.
There is no need to get clauses|0] in the cache.

MiniSat 2.0 also check for case 1 when one of the watches be-
comes false. However, MiniSat does that by accessing the first two
elements of the actual clause. This might cause the hardware or
software pre-fetching mechanism to bring other elements of the
clause in the cache as well. As Table 1 shows the prefetched el-
ements are not needed more than half of the time.

3. STANDARD TEMPLATE LIBRARY (STL)
BASED DATATYPES

In CMUSAT-Base most of the data structures are standard STL
containers such as vectors (dynamic arrays). Many existing SAT
solvers contain their own implementation of containers such as vec-
tors. We argue that this should be avoided whenever possible be-
cause the same level of performance can be achieved by using the
STL containers.

In our current implementation a literal is defined to have a type
litt which is simply an integer!. A clause has a type clauset
which is an STL vector containing literals.

typedef int 1litt;
typedef std::vector<litt> clauset;

'In retrospect 1itt should have been a class.

The clause database has a type clausest. It is stored in form
of an STL vector of clauses.

typedef std::vector<clauset> clausest;

The watch list for a literal has a type watchlistt. It stores the
clause numbers where a literal is being watched in form of an STL
vector.

typedef std::vector<int> watchlistt;

By relying on STL containers the amount of pointer manipula-
tion is reduced in our implementation. This makes it easier to debug
the SAT solver and also argue about its correctness. Reducing the
amount of pointer manipulation should also improve the results of
compiler optimizations.

4. CMUSAT SOLVER

CMUSAT-Base is a pure SAT solver and does not perform any
pre-processing on the input formula. In the past SAT competitions
pre-processing has turned out to be an important component of the
fast SAT solvers. Thus, we added a pre-processing frontend to
CMUSAT-Base. We refer to the resulting SAT solver as CMUSAT.

We use MiniSat 2.0 as the pre-processing frontend in CMUSAT.
It implements various ideas such as variable elimination, clause
subsumption [4].

We experimented with the various ways of integrating MiniSat
2.0 pre-processing with CMUSAT-Base. The simplest possible in-
tegration is to first run MiniSat 2.0 with only pre-processing options
enabled and write the pre-processed file to the disk. Then check the
satisfiability of the pre-processed file using CMUSAT-Base. The
main problem with this integration is that it requires the use of a
temporary file which might not be possible if there is no disk space
left. Also it is much cleaner if a solver does not use a temporary
file during a SAT competition.

We report an integration of MiniSat 2.0 pre-processing with CMUSAT-

Base which does not use any temporary file. It consists of following
steps:

1. Given a CNF formula ¢. First, perform pre-processing using
MiniSat. It is possible that during pre-processing itself the
problem is reported to be unsatisfiable. In this case there is
nothing else to be done and CMUSAT exits with an unsat-
isfiable answer. Otherwise, let ¢’ refer to an equi-satisfiable
formula left after pre-processing.

2. Copy ¢’ from MiniSat data structures to the data structures of
CMUSAT-Base. After the copying is done there is no longer
any need of MiniSat data structures. In our implementation,
MiniSat related objects go out of scope after ¢ is obtained. It
is very important to not keep pre-processing data structures
or even eliminated clauses lying around as it impacts the per-
formance negatively.

3. Check satisfiability of ¢’ using CMUSAT-Base. If ¢’ is un-
satisfiable CMUSAT exits with an unsatisfiable answer. Oth-
erwise, an assignment V' is obtained which satisfies ¢’. Note
that 9 is not a satisfying assignment to ¢ and it needs to be
extended to obtain an assignment ‘¥ that satisfies ¢.

4. Once it is known that ¢’ is satisfiable and 9" is obtained
(7" = ¢) we no longer require the CMUSAT-Base data struc-
tures (they can go out of scope). In order to extend 7,

CMUSAT reads ¢ again. CMUSAT then checks the satis-
fiability of ¢ using CMUSAT-Base and it uses the truth as-
signment provided by 1” as an assumption. We know that
¢ must turn out to be satisfiable. However, the satisfiabil-
ity checking of ¢ (with 9”) gives us a satisfying assignment
7 to 0. By providing 9 as an assumption the satisfiability
checking of ¢ is usually very fast.

S. EXPERIMENTAL IMPACT OF ENHANCED

WATCH LITERAL SCHEME

Table 2 summarizes the performance of CMUSAT, MiniSat 2.0,
and RSAT [2] on 422 industrial benchmarks. These benchmarks
are drawn from the industrial category of SAT competition 2005,
Satrace 2006, and 54 problems were generated by the UCLID tool
[3] 2. Both CMUSAT and MiniSat 2.0 use pre-processing while
the RSAT version we used does not perform pre-processing®. The
experiments were conducted on a 1526MHz cpu, AMD Athlon pro-
cessor with 256 KB cache, and 3GB of main memory. There was a
timeout of 30 minutes per problem.

In order to quantify the impact of the enhanced watch literal
scheme (Section 2) we use two different configurations of CMUSAT:
1) CMUSAT-test : does not use the enhanced watch literal scheme.
It uses the watch literal scheme similar to that in MiniSat 2.0. 2)
CMUSAT-sub : this is the version submitted to the competition. It
uses the enhanced watch literal scheme and was described in the
previous section.

Solver Solved (out of 422) | Total time (in seconds)
MiniSat 2.0 338 212504
RSAT_1_03_LINUX 346 197854
CMUSAT-test 343 193360
CMUSAT-sub 352 181580

Table 2: Summary of results on 422 industrial benchmarks.

It can be seen that the enhancement to the watch literal scheme
described in Section 2 does improve the performance of CMUSAT.
It can solve 352 problems and disabling it reduces the number of
problems solved to 343.

6. REFERENCES

[1] MiniSat,
www.cs.chalmers.se/cs/research/formalmethods/minisat/.

[2] RSAT, http://reasoning.cs.ucla.edu/rsat/.

[3] UCLID, http://www.cs.cmu.edu/~uclid/.

[4] Niklas Eén and Armin Biere. Effective preprocessing in sat
through variable and clause elimination. In SAT, pages 61-75,
2005.

[5] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao,
Lintao Zhang, and Sharad Malik. Chaff: Engineering an
efficient SAT solver. In Proceedings of the 38th Design
Automation Conference (DAC’01), pages 530-535, June 2001.

2We thank Sanjit Seshia for providing the UCLID benchmarks.
3Personal communication with the authors.

