
Watched Literals for 
Constraint Propagation in Minion

Ian Gent, Chris Jefferson, Ian Miguel



Minion History

Introduced at ECAI ’06.
Designed to be a fast black-box solver.
Question: Can a CSP solver be as fast as 
a SAT solver at SAT?



Minion Is Not...

Bug-free.
General purpose.

Limited Dynamic Heuristics.
Capable of hybridising.
Good with very large domain variables.
Have many global constraints.



SAT

SAT is a tiny subset of CSP.
Boolean variables
Conjunctions of literals.

Example:     x ∨ ¬y ∨ z

All SAT problems are CSP problems.
So why use a SAT solver?



Results - QG7.13

Nodes/sec Slower than SAT

ILOG 6.3 25 197

Minion 397 12

WL-Minion 1,728 1.8

MiniSAT 4,932 1



Why is SAT fast?

Highly optimised black-box solvers.
Minion our attempt at an optimised 
black-box, but still much slower than 
SAT solvers.

What else do SAT solvers have?



Why is SAT fast?

Complete SAT (and CSP) solvers have 3 
major components:



Why is SAT fast?

Complete SAT (and CSP) solvers have 3 
major components:

Variable / value heuristic.



Why is SAT fast?

Complete SAT (and CSP) solvers have 3 
major components:

Variable / value heuristic.
Learning.



Why is SAT fast?

Complete SAT (and CSP) solvers have 3 
major components:

Variable / value heuristic.
Learning.
Propagation.



Propagation in CP

Constraints attach a trigger to each 
variable they want to be informed about.
Different types of trigger:

Domain Value (Literal) Removed.
Bounds Changed.
Variable Assigned.



Propagation Example

1 simple rule to get all propagation:
If all but one variable assigned false: 
assign other variable true.

This implies: If variables false, fail.

a ∨ b ∨ c ∨ d ∨ e



Propagation in CSPs

Propagation in a traditional CSP solver:
Algorithm run whenever a variable 
assigned.
Add 1 to a counter if variable assigned 
false.
When counter high enough, find 
unassigned variable and assign.



Propagation

Can we reduce / change those 
requirements?

Need to trigger on all assignments?
Need to count assigned variables?



‘Watched Literals’

Different from normal triggers:
Cheap to move to different literals.
Not restored on backtrack.



Watched Literals for SAT

Idea: If two variables are either 
unassigned or assigned true, no need to 
do anything.
So just find two variables which satisfy 
this condition.
If can’t find two, may have to 
propagate / fail.



Propagation Example

a ∨ b ∨ c ∨ d

0/1 0/1 0/1 0/1
a b c d

Triggers:



Propagation Example

a assigned false.
Update pointer.

0 0/1 0/1 0/1
a b c d

Triggers:



Propagation Example

a assigned false.
Update pointer.

0 0/1 0/1 0/1
a b c d

Triggers:



Propagation Example

Backtrack. a unassigned.
Pointers do not move back

0/1 0/1 0/1 0/1
a b c d

Triggers:



Propagation Example

If b is assigned true,
 pointer doesn’t move.

0/1 1 0/1 0/1
a b c d

Triggers:



Propagation Example

If other variables assigned, nothing 
happens!

0 0/1 0/1 0
a b c d

Triggers:



Propagation Example

If we cannot find something new to 
watch...

0 0 0/1 0
a b c d

Triggers:



Propagation Example

Assign other watch!

0 0 1 0
a b c d

Triggers:



Watched Literals vs. CP

CP:
Trigger on all variables.
O(1) cost on trigger.

Watched:
Trigger on 2 variables
O(n) cost on trigger.

Exactly the same propagation.



Advantages of WL

ZERO cost if a literal not watched.
ZERO cost on backtrack.



Practical Advantages of WL

If watches move to assigned variables - 
no work.
Usually takes few checks to find a new 
literal to watch.
During search, watches move to “safe” 
literals and not triggered often.



Advantages of WL

With watched literals, the “less 
important” a constraint is, the cheaper it 
is during search.

Observed many times in SAT.
Why SAT solvers can add a huge 
number of learned clauses with little 
cost.



Implementation Difficulties

Changes deep in solver.
Important to make moving cheap.

A constraint can watch same literal 
multiple times.
Watches can be left on deleted literals.
Important to make moving watched 
literals very cheap.



Implemented Constraints

Table (extensional) constraint
Element
Array ≠
Max, Min
Non-GAC AllDiff
Occurrence (not GCC)



Implementing Element with WL

M[Index] = Result
Array of variables M.
Variables Index and Result.
There are 3 conditions which must be 
satisfied for this constraint to be GAC.



Element: Condition 1

Index can be assigned i if M[i] = R is 
possible.



Element: Condition 1

Index can be assigned i if M[i] = R is 
possible.

Look for v where:
  v in domain of M[i]
  v in domain of R.



Element: Condition 1

Index can be assigned i if M[i] = R is 
possible.

Look for v where:
  v in domain of M[i]
  v in domain of R.
If found, watch v in M[i] and R.



Element: Condition 1

Index can be assigned i if M[i] = R is 
possible.

Look for v where:
  v in domain of M[i]
  v in domain of R.
If found, watch v in M[i] and R.
If not found, remove i from Index.



Element: Condition 2

Result can be assigned r if M[X] = r is 
possible.



Element: Condition 2

Result can be assigned r if M[X] = r is 
possible.

Look for x where:
   x in domain of X
   r in domain of M[x].



Element: Condition 2

Result can be assigned r if M[X] = r is 
possible.

Look for x where:
   x in domain of X
   r in domain of M[x].
If found, watch x in X and r in M[x]



Element: Condition 2

Result can be assigned r if M[X] = r is 
possible.

Look for x where:
   x in domain of X
   r in domain of M[x].
If found, watch x in X and r in M[x]
If not found, remove r from Result.



Element: Condition 3

Once X is assigned, M[X] and R must 
have the same domain.
Can be implemented in an old-fashioned 
way.



Element Constraint

Algorithm very simple (I think).
Follows naturally from maths.
| dom(Result) | = r, | dom(Index) | = i
Watches = 2r + 2i + 2i
Literals = r + i + ri



Watched Literals

All watched literals found so far follow a 
similar basis.

Find ‘proof’ assignments should not 
be removed, watch it.
When no proof can be found, remove 
values.



Conclusions

Watched Literals are good when a 
“proof” the constraint is true is small.
SAT : 1 variable.
Element : 3 Variables (X,Y, M[X]).
Array ≠ : 2 variables (1 index).
Improvements on Minion’s table too.



Conclusions

Watched literals can massively improve 
the performance of constraints solvers.
They can be used to implement many 
types of constraints.
May provide an easier way of designing 
and implementing some propagators?
Close the gap between SAT and CP.



Results - QG7.13

Nodes/sec Slower than SAT

ILOG 6.3 25 197

Minion 397 12

WL-Minion 1,728 1.8

MiniSAT 4,932 1



Results - QG7.13

Time Nodes Searched

ILOG 6.3 >1h

312,108Minion 786

WL-Minion 180

MiniSAT 0.27 1,307



Thank you
Any Questions?


